ZESZYTY
NAUKOWE

NR 379

ACTA PHYSICA
NR 14

w




ZESZYTY NAUKOWE UNIWERSYTETU SZCZECINSKIEGO
NR 379 ACTA PHYSICA NR 14 2003

FIZYKA TEORETYCZNA

NIKOLAJ A. SERGEEV

SPIN-SPIN INTERACTIONS
AND NUCLEAR MAGNETIC RELAXATION IN MAGNETICS

In present short note we consider the influence of spin-spin interactions
(the Suhl-Nakamura interaction and the dipole-dipole interaction) on the relaxa-
tion of the magnetic nuclei with spin /= 1/2 in magnetically ordered solids.

The interaction Hamiltonian of the two magnetic nuclei with spin 7= 1/2
in magnetic solids can be written as [9]

Hy=Hyp +Hg_y + Hy_y, (1

where the first term is the hyperfine magnetic interaction (HF) Hamiltonian, Hy 5
is the Suhl-Nakamura interaction (SN) Hamiltonian and H, , is dipole-dipole
interaction (DD) Hamiltonian.

For simplicity we shall assume that the HF Hamiltonian is isotropic and
has the form (% = 1)

Hpyp = —0yl3. (2)

Here I; = 1,7 + I, and o, is the NMR frequency of nuclei.
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Usually ||Hydl >> ||Hs-Ml, |1H4d| and the full interaction Hamiltonian can
be written as [3, 9]

Hy = —0ol, + Viy(h Lo + 1_1,) = Dppfal g1y = (U don + L)L (3)

In Eq. (3) V) is the constant of the SN-interaction between nuclear magnetic
moments. The dipolar coupling constant D, is given by

2
h
Dp, = 15 (3cos® 9, - 1). (4)
81
It should be noted that in the interaction Hamiltonian (3) the Z-axis is the
quantization axis for the nuclear spins and in magnetically ordered materials this

axis coincides with the direction of the electron magnetization M, [9].

Now we assume that there are the thermal fluctuations in the electron mag-
netization vector M . [1,2,6,9]. We want to show that the thermal fluctuations
in the direction of the quantization axis for the nuclear spins lead to the tempo-
ral fluctuations of SN and DD interaction Hamiltonians.

Consider two coordinate system X, Y, Z and X', Y’, Z'. In the ,,rigid” coor-
dinate system X, Y, Z the Z-axis coincides with the equilibrium direction of an
electron magnetization M .(0). The ,.fluctuated” coordinate system X', Y', Z"is
obtained by the rotation of the coordinate system X, Y, Z around the axis at an-
gle ¢ with the axis X. In this ,fluctuated” coordinate system the Z’-axis coin-
cides with the direction of an electron magnetization M (1) at the time ¢ The
transformation from the coordinate system X, Y, Z to the coordinate system X',
Y’, Z' is defined by the rotation operator [4, 8]

R(8,¢) = exp(~iplz) exp(~ibly) exp(iplz). (%)

Here O is the angle between Z-axis and Z'-axis.

The interaction Hamiltonian in the , fluctuated” coordinate system has the
form

H'= R(8,9)H,R™'(8,9). (6)
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Using Eq. (5) and assuming that fluctuations in the angle 6 is small (cos6 = 1,
sinf =~ 0) we obtain

H'(t)=Hy, + H /). (7

The static part of interaction Hamiltonian (7) coincides with Hamiltonian (3).
The time-dependent part in Hamiltonian (7) contains three terms

H\(@t)=Hyp () + Hg_yn(0) + Hy_4 (1) (8)

Here the term

w - i
Hyp ()= —%-080) (7T, -1, ) ®)

V2

describes the fluctuations in the hyperfine interaction Hamiltonian. In Eq. (9)

Ty = $f1i = Tf“ﬁ(fxi +1y,) (10)

are components of irreducible tensor operator of the first rank [4, 5, 8].
The term

Hs y(0) =2V - 0(1) (70 - Ty —&®0 Ty ) (11)
is the fluctuating part of the Suhl-Nakamura interaction Hamiltonian. In Eq. (11)

the 75 ., are components of irreducible tensor operator of the second rank [4,
5, 8]:

Du =F - zDhe + L1:1hz) (12)
In Eq. (8) the term
Hy 4(t) = 6Dy, - 8(t) - (e - T, | =&V .7, ) (13)

describes the fluctuations in the dipolar interaction Hamiltonian.
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From Eq. (11) and Eq. (13) we see that these fluctuating Hamiltonians
have the same forms. So we will use the new Hamiltonian

Hiy () = Ay -8(0) - (¢ - Ty =0 - T, ), (14)
where
A, =2-(Vyy +3Dyy). (15)

In order to derive the expressions for the spin-lattice relaxation rates we use the
well-known expression for the reduced spin density matrix [5, 9]

® . —Edr L0 7L 2 — 0, P (16)

Here
5(1) = 0z p(p)e 1002 (17)

.and
H,(@t) = "2 H (t)e 02 (18)

In Eq. (16) the upper bar denotes the average on the random fluctuations of the
Hamiltonian H(?).

Using Eq. (18) we obtain from Eq. (9) and Eq. (14)

H () =F@) T, - + F*(t) - T_ - &7, (19)
where
F(t) = 20 .9(r) - 700, (20)
J2
and
Ty =T + o Th ) (21)

In Egs. (21)
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o = ‘/_E:ﬁ' 22)
g
Using the definition
J(wg) = [F(OF*(t ~ 1) - O dr (23)
0

and retaining in Eq. (16) only time independent terms (secular terms [5, 9]) we
obtain

d .
-£=—ﬂwﬂ{ﬁilmH—J0%¥ULH;Ml (24)

Multiplying both sides of Eq. (24) by I,= I, + I,, and taking the trace, we ob-
tain the equations of motions for the expectation values of I

<d—;;z‘> = ~J(wg) ([T, [T, I210) = T (@) - (T[T, I21)),  (25)

Here <C> =Tr(Cp).
Using the following commutation relations

[Ty, 1,]=7T,,

we have from Eq. (25)

<%§TZ> =-2 RC[J((D())] : <[T+’T—]> =
= =2J () - {<[T1,—1 s T1,+1]> ta- (<[T1,—1’ T2,+1]> + (26)

(T, 1) + 0 ([T, Ty I
Using the relation [7]

(7o T ) = (1),
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(711 ) = (B Tond) =0,

(BTl = S 10 +D)-{17),

we obtain

<igtl> = —2Re[J(w)] - [1 + %1(1 +Da?]- (1), 27)

From Eq. (27) it follows that the spin-lattice relaxation rate is defined by equa-
tion

I = Y ar + G i (28)
where
(e = 2Re[J(wg)] (29)

is the spin-lattice relaxation rate defined by the fluctuations in the hyperfine in-
teraction Hamiltonian;

(T = RelJ (@0)]- %1(1 i) ol (30)

is the spin-lattice relaxation rate defined by the fluctuations in the Suhl-
-Nakamura and dipolar interaction Hamiltonians.

From Eq. (29) and Eq. (30) we have

-1
B e L2y pazy =2 G31)
(T )wr @y 3 g

where

My =10 +1)- (i + 3D, (32)
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Usually the NMR resonance frequency for nuclei *7Fe is o, = 10% rad -

sec”! Assuming that M, = (103 + 106) rad - sec”! [9], we have from Eq. (31)

(T e _ 4M

-1 T2
L ur 0

2 x4-107%+4-10710 (33)

It follows from obtained results (Eq. (33)) that spin-spin interactions (the
Suhl-Nakamura interaction and the dipole-dipole interaction) give negligibly
small contribution to the relaxation of the magnetic nuclei with spin /= 1/2 in
magnetically ordered solids.
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ODDZIALYWANIE SPINOWO-SPINOWE
1 RELAKSACJA MAGNETYCZNA JADROWA W MAGNETYKACH

Streszczenie

Zaktadajac, ze w magnetycznie uporzadkowanych ciatach relaksacja jest uwarun-
kowana oddziatywaniami Suhl-Nakamura oraz oddziatywaniami dipolowymi, wyprowa-
dzono analityczne wyrazenie na predko$¢ relaksacji spin-sie¢ (7;7") jader ze spinem
I=1/2.



