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Abstract

A general equation for the dipolar correlation function, to be used to analyze various kinds of independent internal motions,
described by some correlation times 7, (m = 1,2...k), has been obtained. The obtained expression has been used to analyze the
temperature dependencies of different NMR measured values: second moment: spin—lattice relaxation times; amplitude of solid

echoes signals.
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1. Introduction

The investigations of thermally activated molecular or
atom internal motions in solids are important applica-
tions of nuclear magnetic resonance (NMR) method. At
the present time there are a great number of papers
describing the calculations of the different NMR values
measured in solids with internal mobility. Experimental
NMR values are usually the second moment of NMR
line, spin—lattice relaxation rates in the laboratory and
rotating frames, the time position and amplitude of the
solid echo [1-15]. All of these values are governed in the
polycrystalline sample by the dipolar correlation func-
tion [15-17]
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a;(1') = R,.]T3(t’)[1 — 3 cos? 0;(7)]. (3)
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In Eq. (1) the upper bar denotes the average of the
value a;;(¢")a;(¢') on the random motions of spin-pair
i—j. In Eq. (2) y and [ are the gyromagnetic ratio and
nuclear spin, respectively. In Eq. (3) R; and §; are the
spherical coordinates of spin-pair i — j vector Eij in the
laboratory frame where the vector of the external
magnetic field is parallel to z-axis.

In the case of the simple model of the single motion
with one correlation time 7. the dipolar correlation
function A;(¢",¢') has the form [9,15]

_ t
h(|t]) = My + AM; exp <_r_|>’ 4)
where t =¢" — 7.
In Eq. (4)
My, =W (a;)° (5)
i

is the second moment of motionally narrowed NMR
line [15] and

AM> = M, — M,. (6)
In Eq. (6)

My=W> a; (7)
iy

is the second moment of NMR line in rigid lattice [15].
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Often in solids the internal mobility of molecular
groups is not a single motion with one correlation time
7.. For example a NH,4 group in NH4Cl rotates about its
threefold and twofold symmetry axes and these complex
motion is not described by single correlation time. For
those complex motions, it is often used in literature
Eq. (4) as approximation with a single correlation time,
which is equal to the sum of the inverse of the
correlation times of the constituent motions (see
discussions in Ref. [6])

=> g (8)
k

Here 1o is the correlation time of the kth type of
internal motion.

However, it has been shown in [6], that this
approximation is not valid for the molecular reorien-
taions into asymmetric two potential wells and three
potential ones.

The main purpose of this paper is to derive the general
equation for the dipolar correlation function (1), which
can be used to analyze various kinds of internal
motions, described by some correlation times. Our
equation is not restricted to two-site or three site
potential wells and it can be applicable not only for
the case of molecular group reorientations, but also for
the case of atom or molecular diffusion. It should be
note, that in this paper we consider only the classical
models of molecular motions. The problem of quantum
rotations in NMR was discussed in [18-21].

2. Theory

In order to calculate the correlation function
hij(1", 1) = a;(t")a; (") we consider the following model
of the molecular motion in solids. The two nuclei i and j
are the nuclei of given molecular group (for example
protons of the CH3, NH; groups). The molecular group
undergoes k independent thermally activated motions
among discrete lattice sites Qyy,. .5 = 25,Q;,...Q,. In
each lattice sites defined by indices s, (m = 1,2...k) the
molecular group undergo thermally activated jumps
between n, lattice sites s,,S),,sy,.... As example the
possible lattice sites Q. , = QA,QAZ of the two nuclei i
and j of the molecular group undergoing two indepen-
dent thermally activated motions are shown in Fig. 1.

The correlation function A(¢”, ¢") can be written as [15]:

WZ Z P[Q‘\'lsg,u.,sk (t//)Qs’lx’ sj((t/)}

2
o
ij si, ékﬁl, =S

)al]‘(Qs’ls’z...Sﬁi) (9)

Here P[Qy, 5 (1")Qy, s, 5 (f')] is the probability that
at time ¢ =¢", the random function a;() is equal to
a;j(Qy5,...5,) and at time ¢ = ¢, the random function a;(1)
is equal to a;’/(qust ‘..s;()~ In Eq. (9) indices s, and s,

x ai/'(QSISz...s‘A»

3; (Qy)

Fig. 1. Schematic representation of the possible lattice sites Qy,5, =
Q;, Q,, of the two nuclei i and ;j of the molecular group undergoing two
independent thermally activated motions. The first dynamical process is
the jumps of the two nuclei i and j of the given molecular group among
three lattice sites Qy,1, Qy,2, 3, where index sy = 1,2,3 defines the
lattice sites of molecule in lattice; the second dynamical process contains
the jumps of whole molecule between three sites of molecule in lattice
Q15y, Qay,, Q34,, where index s; equals independently to 1, 2, 3.

(m = 1,2...k) denote the different lattice sites for the mth
thermally activated process.

Because we assume that k thermally activated motions
are independent then the probability P[Qys, . 5 (¢7)
Q5.5 (¢)] can be factorized and we can write Eq. (9) as

D> HP ()2, (1)

B Sy SIS e

X aj(Qysy..0)7(L5,...5,)- (10)

Here P[Q, (1")Qq (¢')] is the probability that at time
t = ¢, the molecular group occupied the lattice position
Q,, and at time ¢ = ¢”, this group is in the lattice position
Qy . The probability P[ 5 ()R ()] describes the mth
(m —1 2...k) thermally activated process from k in-
dependent motions.

If we assume that the random process describing the
molecular motions in solids is stationary Markov
process then for the simple model of the molecular
motion between the equivalent potential wells, the
probability P[Q, (")Qg (¢)] is equal [9,10,15]

PQ,, (") (7)] ,%{i {1 — &P (i)}

+exp(—rl )53”13571}. (11)

Here n,, is the number of lattice sites for the mth
thermally activated process. 1¢, is the correlation time
for this process. In Eq. (11) t = |/ — 7|.

Inserting Eq. (11) into Eq. (10) we obtain the finish result

-> 5 Hnm{nm[l—exp(

T )
B Sty S8y, M= cm

t
+exp <_ ‘E_> :| 53,,,3”, }ay'(Qslsz...sk)aij(Qs’]s’z...s}C)~
cm
(12)
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As example using the obtained Eq. (12) we consider the
case of two independent type of molecular motion. In this
case from Eq. (12) we have

=1 e (- Ly - (- 1)
i,
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It should be note that in Eq. (13) nuclei /i and j may be
also the nuclei of different mobile molecular group.

If the lattice sites €2, are the sites which there are in
the rigid lattice, then

My =W ai(Qs,) (14)
ij

is the second moment of NMR line in rigid lattice;

ey e

is the second moment of motionally narrowed NMR
line by the first dynamic process (for example, by the
reorientation of molecule around the symmetry axes);

Z[ Zalj H&? - WZW, (16)

Y'J—l
is the second moment of motionally narrowed NMR
line by the second dynamic process (for example, by the
“diffusion” of the whole molecule);

2
- WZ@z, (15)

ny 2

<M2>WZ[ anzalj S]h
=W lay)?, (17)
ij

is the second moment of motionally narrowed NMR
line by the first and second dynamic processes, Eq. (13)

may be written in the form

h(t) = M) + (M, - (My))exp <—%)

(3T — (M) exp (2)

+ (My + (M) —Vz—ﬁz)

X eXp [—<Til+r;>t} (18)

From Eq. (18) it follows that if we have only one

dynamical process (1., = o), then My =My, (M) =
M, and
_ R t
/1([) =M2—|—(M2 —Mz)exp <— ‘E—) (19)
cl

Obtained Eq. (19) fully coincides with Eq. (4).

From comparison of Eqs. (18) and (19) it follows that
in the case of complex motions in solids we cannot use
function (19) replacing ;' on 13! = 1! + 15 [6].

Now we consider the examples of applications of
Eq. (18) to calculations of different NMR measurement
values.

3. The temperature dependence of second moment of
NMR line

The temperature dependence of the second moment of
NMR line is determined by equation [2,14,15]

1 ow
= — . 2
7 [anO(w) do (20)

In Eq. (20) the function of the spectral density Jy(w) is
determined by the equation

Jo(w) = / h(|t))exp (it) dt. 1)
Inserting Eq. (18) into Eq. (21) we have

Jo(w) = [O h(t)dt = (M »5(0) + (M — (M »)

o0

M (T)

27¢1 -
X ——————+ (M — {M>)
1 + (CO‘CCl)Z ( )
2
Lz + (My + (M)
1+ (CO‘CCQ)
—_ prm— 2TC3
- M, — My)—————— (22)
1 + (wTCB)z
where
1 1 1
—=—4— (23)
Te3 Tel T2
Because
/ﬂ L do=2tan"! p) (24)
1+ (wr)? '
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Fig. 2. Temperature dependence of the second moment. The graph
represents Eq. (25) for following parameters: M> = 18.47 x 107812, M, =
Bx1087T%, My =03x M, x103T2 (M) =3 x 1078 T2,
o1 = 1071 x exp(20.8 kJ/mol) s, T = 1071 x exp(35.8 kJ/mol) s,
S = /M.

inserting Eq. (22) into Eq. (20) we obtain
p— 2
My(T) =< M) + (M — <Mz>)gtam‘1 (0w Te1)
— 2
+ (M, — <M2>)E tan~! (6w 102)
+ (My+ (MY — M,

- ﬁz)% tan~! (6w 103). (25)

The temperature dependence of the second moment is
shown in Fig. 2.

4. The temperature dependencies of spin—lattice
relaxation times

The temperature dependence of the spin—lattice
relaxation rates in laboratory 7' and rotating 77
frames in the polycrystalline sample are determined by
equations [15-17]

Ty = LJo(wo) + 4Jo(2e0)], (26)

Tl_pl = %[3]0(2601) + 5Jo(wo) + 2Jo(2wy)]. (27)

In Egs. (26) and (27) the function of the spectral
density Jy(w) is determined by Eq. (21).
Inserting Eq. (22) into Egs. (26) and (27) we have
o 2 fr—

T —3(M2 — (M)

Tel 4ty
2 + 2
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Fig. 3. Temperature dependencies of 7—!'. The graph represents
Eq. (28) for the same parameters as in Fig. 2; wy=2n x 60 =
376 MHz rad.
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Fig. 4. Temperature dependencies of Tfpl' The graph represents
Eq. (29) for the same parameters as in Figs. 2 and 3; wy = 27 x 60 =
376 MHzrad, w; = (n/2) x (1/3.6) = 0.43 MHz rad.
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The temperature dependencies of 7!

and 77/
shown in Figs. 3 and 4.

5. The temperature dependence of solid-echo signal

The solid echo signals is determined by equation [9,10].

a1
Vit ta,1,t1) {1——/ t1 —2)h }dz—l/ zh(z) dz
2 Jo
S wae g [ e
2 ), z 2] T —2)h(z) dz
T—1
- / (e — 1) — 2Jh(z) de
0
1 T+
- —/ (c+ 6 — 1) — 2] h(z) d=
2 T+ih—1
f —t 1 1
+— h(z) dz+—/ (t—2)h(z) dz
2 T+ 2 —1
T+h—1
- / (t — 2)h(z) d=z
15}
-1
+(r—t1)/ h(z) dz
T+ —1
—n
+ / [(t—11) —z]h(z) dz
titz‘fflg
—/ [(t—1—tr) —z]h(z) dz + ---].
0
(30)
Denoting
Ky =My, (31a)
Ki =M, — (M), (31b)
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Fig. 5. Temperature dependence of time position (z,, us) of the
maximum of the solid echo signal. The graph obtained from Eq. (33)
for the same parameters as in Figs. 2-4; T = 16 s, #; = 3.6 ps.

Ky =M, — (M), (31¢)

Ky = My + (Myy — M, — M, (31d)

and inserting the correlation function (18) into Eq. (30) we
obtain

Vit,to,t,t1) = fq1— %KO[I* (2T+12 - [51)}2

- ZK}T(%[RI'([) 12711 tl7TCi) + }

= fexp —%Kg{l— (2‘5+t2— t—lﬂz

2
fZK‘cC,

(8, b, Ty 0, Tei) ¢y (32)

where
t 3t 12

7 n 1
4 1y 410, r(.,- 4
() 2o (s )
T
+lex o ——ex _f=h
2 P Teci 2 P Tei
1 t t—
(-2 oo 5)
2 Tei Tei
t—1— lz> 1 ( T )
+exp| ———— | +zexp | ——
Tei 2 Tei
1 h—t
+§exp (— M) (33)

The temperature dependence of time position of the
maximum of the solid echo signal is shown in Fig. 5.

Ri(t7 t27T7 t],fc[) = -
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