ABSTRACTS

XIX INTERNATIONAL SEMINAR ON MODERN MAGNETIC RESONANCES

joint

THE POLISH EPR GROUP

6-10 May, 2001 Poznań-Będlewo, Poland

DIPOLAR ECHOES IN SOLIDS AND MOLECULAR MOBILITY

P.Bilski^{a)}, N.A.Sergeev^{b)}, J.Wasicki^{a)}

^{a)}Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland ^{b)}Institute of Physics, University of Szczecin, 70-451 Szczecin, Poland

The "solid-echo" technique $90_Y^0 - \tau - 90_X^0 - Acq(t)$, proposed by Powles, Mansfield and Strange [1,2] is a powerful NMR method for studying molecular structure and dynamics in solid state. In this communicate we consider the general "solid-echo" technique: $\alpha_Y^0 - \tau - 90_X^0 - Acq(t)$. The first RF pulse is the hard pulse α_Y^0 , for which rotational angle of the RF pulse $\alpha = (2n+1) \cdot (\pi/2)$ (n=1,2,3,...). The RF field of this pulse lies along the OY-axis in the rotating frame. The second RF pulse is the hard 90_X^0 pulse. It has been shown that at $M_2\tau_c^2 >> 1$ (the case of rigid lattice) and at $M_2\tau_c^2 << 1$ (the case of motional narrowed NMR line) the maximum of echo signal is observed at $t_e = 2\tau + t_2 - t_1/2$ (Fig.1). Here t_i (i=1,2) are the widths of the RF pulses. The times t_e and τ are measured from the beginning of the first pulse.

Fig.1. The dipolar echoes in NH_4Cl at the room temperature for the pulse sequences: $270_Y^0 - \tau - 90_X^0 - Acq(t)$, $450_Y^0 - \tau - 90_X^0 - Acq(t)$, $630_Y^0 - \tau - 90_X^0 - Acq(t)$. $t_2 = 3.6 \mu s$; $\tau - t_1 = 5.8 \mu s$.

It has been shown that in the slow-motion region ($M_2 \tau_c^2 \approx 1$) the amplitude of echo signal is reduced and the maximum of echo is shifted to the end of the second pulse. A comparison of the developed theory with experimental results demonstrates a good agreement between them.

- [1] J.G.Powles, P.Masfield, Phys. Rev. Lett. 2, 58 (1962).
- [2] J.G.Powles, J.H.Strange, Proc. Phys. Soc. 82, 7 (1963).