II FORUM EMR-PL # The Book of Abstracts Częstochowa - Hucisko 16-18 may 2012 ### SPIN ECHOES IN EXCHANGE-COUPLED SYSTEMS #### N.A.Sergeev, A.M.Panichb ^{a)} Institute of Physics, University of Szczecin, 70-451 Szczecin, Poland Be'er Sheva 84 84105, Israel Spin echo technique is one of the most powerful methods for the investigations of the quantum dynamics of the two- and multi-level systems [1-7]. We studied Hahn echo decay in powder thallium chloride TlCl, which comprises unlike spins of two interacting ²⁰³Tl and ²⁰⁵Tl isotopes. All ²⁰³Tl and ²⁰⁵Tl NMR measurements were carried out at room temperature. The contribution of the dipole-dipole coupling of nuclear spins to the second moment of thallium resonances, calculated using Van Vleck formula [1], are 1,21 kHz² for ²⁰³Tl and 1,69 kHz² for ²⁰⁵Tl NMR, respectively, and are much smaller than the experimental measured values (16,1 kHz² for ²⁰³Tl and 10,24 kHz² for ²⁰⁵Tl NMR, respectively). Thus one concludes that the experimental second moments are predominantly determined by the indirect exchange coupling of thallium nuclei. Figure. The decay of Hahn echo signals of (a) 203 Tl and (b) 205 Tl nuclei in polycrystalline TlCl at a resonance frequency $\nu = 28.7 MHz$. The circles are the experimental data, the solid line is the result of calculation The multi-particle character of interaction Hamiltonian for the system consisting of two type of nuclei ²⁰³Tl and ²⁰⁵Tl does not allow one to calculate explicitly the spin echo decay. Therefore, we present a simple model to calculate the Hahn echo decay of the exchange-coupled nuclear spins in solids. We assume that fluctuations of the NMR resonance frequency are connected with exchange coupling among resonant and off-resonant nuclei. Satisfactory agreement between the calculated and experimentally observed echo decay of the exchange-coupled spins of ²⁰³Tl and ²⁰⁵Tl isotopes in thallium chloride TlCl is obtained (figure). #### References: - [1] A.Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London, 1961 - [2] S.N.Polulakh, N.A.Sergeev, A.I.Gorbovanov, V.N.Berzhansky, Solid State NMR 37, 28 (2010) - [3] A.M.Panich, N.A.Sergeev, I.Shlimak, Phys.Rev. B 76, 155201 (2007) - [4] N.A.Sergeev, D.S.Ryabushkin, Yu.N.Moskvich, Phys. Lett., A 104, 97 (1984) - [5] D.S.Ryabushkin, Yu.N.Moskvich, N.A.Sergeev, Phys. Lett., A 121, 357 (1987) - [6] N.A.Sergeev, M.Olszewski, Solid State NMR 34, 167 (2008) - [7] J.R.Klauder, P.W.Anderson, Phys.Rev. 125, 912 (1962) b) Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653,