The Henryk Niewodniczański

INSTITUTE OF NUCLEAR PHYSICS
Polish Academy of Sciences
152 Radzikowskiego str., 31-342 Kraków, Poland

www.ifj.edu.pl/reports/2009/ Kraków, December 2009

Report No. 2031/AP

XLII Polish Seminar on Nuclear Magnetic Resonance and Its Applications. Kraków, 1-2 December 2009

ABSTRACTS

Organizing Committee:

Members:

T. Banasik Z.T. Lalowicz /v-chairman/ A. Birczyński K. Majcher J. Blicharski A. Młynarczyk S. Heinze-Paluchowska M. Noga /secretary/ J. W. Hennel /chairman/ Z. Olejniczak P. Rosicka M. Jabłońska A. Jasiński /honorary chairman/ W. Rutkowski K. Jasiński T. Skórka A. Krzyżak G. Stoch P. Kulinowski U. Tyrankiewicz S. Kwieciński W.P. Weglarz /v-chairman/

G. Woźniak

Sponsors:

AMX-ARMAR AG, BRUKER-Polska Sp. z o.o, PAŃSTWOWA AGENCJA ATOMISTYKI, VARIAN INTERNATIONAL AG. KOMITET FIZYKI POLSKIEJ AKADEMII NAUK

NON-DEBYE RELAXATION AND TEMPERATURE DEPENDENCE OF THE SECOND MOMENT OF NMR LINE

Marcin Olszewski and Nikolaj Sergeev

Institute of Physics, University of Szczecin, Poland

The temperature dependence of the second moment $\,M_{\,2}\,$ of NMR line is determined by expression [1]

$$M_2(T) = \frac{1}{\pi} \int_{-\delta\omega}^{\delta\omega} J_0(\omega) d\omega , \qquad (1)$$

where the spectral density $J_0(\omega)$ is the Fourier transform of the dipolar correlation function h(t) (t > 0) [1]

$$J_0(\omega) = \operatorname{Re} \int_{-\infty}^{\infty} h(t) \cdot \exp(i\omega t) dt . \tag{2}$$

Usually the dipolar correlation function is selected as exponential Debye function $h(t) = h(0) \exp(-t/\tau_C)$, where τ_C is the correlation time described the relaxation of the dipolar correlation function. The Fourier transform of this function gives the Debye (or Bloembergen-Purcell-Pound) form of the spectral density $J_0(\omega)$ [1]

$$J_0(\omega) = \frac{2h(0) \cdot \tau_C}{1 + (\omega \cdot \tau_C)^2} . \tag{3}$$

However the non-exponential relaxation processes are often observed in the different range of physics (see [2-5] and references there). The non-exponential relaxations give the spectral densities $J_0(\omega)$ differed from the Debye form. At present it is well known the several spectral densities functions described the non-Debye relaxation [2-5]. It have been used frequently the Cole-Cole function; the Cole-Davidson function; and Havriliak-Negami function [3-5]. These functions may be wrote by one expression [3]

$$J_{0}(\omega,\varepsilon,\delta) = \frac{2h(0)\sin\left[\varepsilon \cdot \arctan\left[\frac{(\omega\tau_{C})^{\delta}\sin(\delta\pi/2)}{1+(\omega\tau_{C})^{\delta}\cos(\delta\pi/2)}\right]\right]}{\omega \cdot \left[1+2(\omega\tau_{C})^{\delta}\cos(\delta\pi/2)+(\omega\tau_{C})^{2\delta}\right]^{1/2}}, \quad 0 < \delta \le 1, \quad \varepsilon \le 1/\delta. \quad (4)$$

Spectral density (4) coincides with Debye function (3) if $\varepsilon = \delta = 1$ [3].

In the present communication it will be discussed the temperature dependence of the second moment of NMR line for the case of non-Debye (non-exponential) relaxation. The temperature dependences of the spin-lattice relaxation time have been considered in [3.]

References:

- [1] A.Abragam, The Principles of Nuclear Magnetism (Oxford Univ. Press, Oxford, 1961).
- [2] J.C.Phillips, Streched exponential relaxation in molecular and electronic glasses, Report Progress Physics, 59 (1996) 1133-1207.
- [3] P.A.Beckmann, Spectral densities and Nuclear Spin Relaxation in solids, Physics Reports, 171 (1988) 86-128.
- [4] W.T.Coffey, Dielectric relaxation: an overview, Journal of Molecular Liquids, 114 (2004) 5-25.
- [5] W.Dieterich, P.Maass, Non-Debye relaxations in disordered ionic solids, Chemical Physics, 284 (2002) 439-467.