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Abstract

The frequency dependences of the relaxation times of NMR spin echo signals of the quadrupole nuclei *>Cr were
measured in the ferromagnetic semiconductor Cdg g55Agg ¢15Cr,Se, at the temperature T = 4.2 K. The experimental
results were well explained by the developed theory of the two-pulse echoes relaxation. The main assumption of this
theory is the assumption that the temporal fluctuations in the electron magnetization due to the fluctuations in the
hyperfine and quadrupole Hamiltonians lead to the relaxation of the echo signals. It was shown that in
Cdy 955A80.015Cr,Se, there are two kinds of the quadrupole nuclei >*Cr, which have quite different relaxation times.
The existence of two kinds of the nuclei **Cr (**Cr(I) and **Cr(I)) was connected with doping of the cadmium
selenochromite with Ag™ ions. The nuclei **Cr(II) are sited in the crystal ranges where the rapid electron exchange
between the Cr*™ and Cr®' ions leads to the rapid fluctuations in the local electron magnetization vector. The nuclei
33Cr(I) are located far from these dynamical defects. The observed frequency dependence of the relaxation rate of the
usual Hahn’s echo signal from the nuclei **Cr(I) was explained by the secular theory of the echo relaxation. The
nonsecular relaxation theory well explains the frequency dependence of the relaxation rate of multiquantum echo signal
from the nuclei **Cr(Il). © 2000 Elsevier Science B.V. All rights reserved.

PACS: 76.20 + q; 76.60. — k; 76.60.Lz
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1. Introduction

The pulse-NMR method is one of the powerful
techniques for the study of the spin dynamics in
magnetically ordered materials. For the nuclear
spin system with spin I = 4, the magnetization of
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the electron system M, due to the hyperfine interac-
tion determines the NMR resonance frequencies
[1,2]. On the other hand, the thermal fluctuations
in the electron magnetization lead to the fluctu-
ations in local hyperfine magnetic fields at the
nuclei sites. These fluctuations in the hyperfine
fields can be probed through the relaxation decays
of the spin echo signals [3-9]. In the case of a spin
I = § system the excitation of the nuclear spin sys-
tem by the two-pulse sequence causes the forma-
tion of a single echo signal observed at ¢, = t (here
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71s the time interval between the RF pulses and ¢, is
the time interval between the end of the second
pulse and the maximum of the echo signal) [1,10].
The decay of this echo signal depends on the cor-
relation time of the fluctuating hyperfine magnetic
field and may be either exponential or nonexponen-
tial [3-9].

In the case of quadrupole nuclei with I = 3 (for
example *>Cr nuclei), when the quadrupole interac-
tions of the nuclei do not equal zero, two echo
signals may be observed at t, =t and t, =37
[11-16]. The first echo signal V. is the usual
Hahn’s echo [1,10]. The NMR spectrum V (v) re-
corded with the aid of this echo reflects all NMR
spectral lines of the quadrupole nuclei. The fre-
quencies of these lines depend not only on the
interaction of the nuclear magnetic moment with
the hyperfine magnetic field, but also on the electric
quadrupole interaction of the nuclear electric quad-
rupole moment with the inhomogeneous electric
field at the site of the nucleus [1,10]. However,
the NMR spectrum V 3,(v) recorded with the aid of
the echo at t, = 37 consists of the NMR resonance
frequencies, whose values are determined by the
hyperfine interaction only [13,14]. The experi-
mental conditions for the formation of the echo
signal V3, are quite different from those for the
echo V', [13-16]. The echo V5, appears in the case
when the first RF pulse excites the three-quantum
coherence in the nuclear spin system [13-15]. In
order to achieve efficient excitation of the three-
quantum-coherence it is necessary to selectively
excite the three-quantum transition + 3« F 3,
The efficient excitation of this three-quantum
transition depends on the carrier frequency of the
RF pulses and on the relation between the ampli-
tude of the RF pulse and the quadrupole splitting
of the NMR spectrum. The optimal excitation is
achieved when this relation is approximately equal
to one and when the carrier frequency of the RF
pulses coincides with the frequency of the
+ 3> F 4 NMR transition [13-15]. It is necessary
also that the duration of the first RF pulse exceeds
the duration of the second pulse [13-15]. In mag-
netically ordered substances the amplitude of the
RF field at the nucleus site due to the hyperfine
interaction is always much greater than the ex-
ternal alternating RF field [1,10]. The enhance-

ment coefficient 5 of the RF field depends on many
factors which are not well known usually [1]. This
is one of the serious limitations which does not
allow to obtain experimentally the optimal echo
signals V'3.(v) (as well as the echo signals V,(v)) at
the different carrier frequencies of the RF pulses
[13-15].

In the case of the quadrupole nuclei the thermal
fluctuations in electron magnetization vector
M, lead to the fluctuation in the hyperfine interac-
tion Hamiltonian and in the quadrupole interac-
tion Hamiltonian too [17-20]. The existence of the
two channels of the nuclear relaxation (through the
hyperfine and the quadrupole interactions) is reflec-
ted in the decay of the spin echo signals of quadru-
pole nuclei [17-20].

In this paper we analyze the decay of two-pulse
echo signals of the quadrupole nuclei *3Cr in fer-
romagnetic semiconductor Cdg og5Ag0.015Cr,Se,.
The paper is organized as follows: the experimental
results are presented in Section 2. The experimental
results contain the frequency dependences of the
relaxation times of NMR spin echo signals V (v)
and V3,(v) of quadrupole °*Cr nuclei obtained
in the multidomain polycrystalline sample of
Cdp.os5AL0.015Cr,8¢ey at T =4.2 K. In Section
3 we discuss the obtained experimental results us-
ing the theory of the relaxation of the two-pulse
echo signals developed in the appendix. We assume
that the relaxation of the spin echoes arises from
the temporal fluctuations in the electron magnetiz-
ation vector M,. The good agreement between
the theory and experiment suggests this model of
the spin echoes relaxation of the 3*Cr nuclei in the
cadmium selenochromite doped with silver ions.
From the best fit of the theory and experiment
we obtained the parameters which describe the M,
fluctuations. The discussions of these parameters
and the possible source of the time fluctuations in
the electron magnetization vector M, are presented
in Section 4. Section 5 contains the conclusion.

2. Experimental results

The NMR measurements were made on a
polycrystalline multidomain sample of
Cdy.085A80.015Cr2Se, at 4.2 K. Experiments were
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performed on a home-built incoherent pulse NMR
spectrometer in zero static external magnetic field.
The NMR spectra of **Cr nuclei were obtained by
recording the dependences of the amplitudes of the
echo signals at t, =t and t, = 37 as a function of
the carrier frequency v of the RF pulses at fixed
values of the amplitude and the time separation t of
the two RF pulses. The echo signals V', (as well as
echo signals V;.) were observed at equal ampli-
tudes of the both RF pulses. For the echo V, the
relation between the durations of the second (t,)
and the first pulses (¢,) was equal t,/t; =~ 2. For the
echo at t, = 37 this relation was equal ¢,/t; =~ 0.5.
In order to obtain the echo signals V;, it was
necessary to use powerful RF pulses.

The obtained NMR spectra V.(v) and V;,(v) of
33Cr nuclei are shown in Fig. 1. These NMR
spectra coincide with NMR spectra obtained
earlier [13,14,20]. In a spinel structure CdCr,Se,
the Cr nuclei are located in the octahedral lattice
sites. The local symmetry of these sites is trigonal so
the NMR absorption spectrum of *3Cr nucleus
(I =3) would consist of three NMR lines [1,10].
The frequencies of these lines are given by the
following expressions [13,20]:

vy =g + vya(3cos? 0 — 1), o))
Va3 = Vo +(va £v9)3 cos® 8y — 1), 2

where v, is the isotropic component of the NMR
frequency (vo = 44.05 MHz [13,20]), v, the anisot-
ropic part of the resonance frequency (v, = — 0.55
MHz [13,20]) and v, the value of the quadrupole
splitting of the NMR spectrum (vq = 0.92 MHz
[13,207]). The angle 6, in Egs. (1) and (2) is the angle
between the local trigonal axis and a direction of
the electron magnetization vector M,.

From Fig. 1 it follows that action of two RF
pulses on CdCr, Se, leads to simultaneous excita-
tion of the nuclci in the domains and in the domain
walls, as result of which the V' (v) and V. (v) spectra
are the superpositions of the spectra from the do-
mains, which have a discrete fine structure, and of
the continuum from the domain walls. The NMR
spectrum of >*Cr nuclei shown in Fig. 1 reflects the
presence of three different types of domains in
CdCr,Sey, in which the orientation of the electron

V(v
a
X RRE
3 <11>
V% 2
<110>
1 <t00»
Vo
40 42 44 46
Frequency v[MHz}
Ve (V)
b
43 4 45

Frequency v{MHz]

Fig. 1. The NMR spectra V.(v) (a) and V5.(v) (b) of 33Cr nuclei
in Cdg 955Ag0.015Cr,Se, at T = 4.2 K. The vertical bars rep-
resent schematically position of NMR spectral lines vy, v, v3
(Egs. (1) and (2)) of *3Cr nuclei from different type of the
domains.

magnetization M, coincides with the crystallo-
graphic directions [100], [110] and [111]
[13,20,21].

It was found that the shape of the NMR spec-
trum V. (v) depends on the time interval T between
the exciting RF pulses. This fact suggests that the
relaxation rates of the echo signals are different at
different carrier frequencies of the RF pulses and
that the RF pulses excite only the nuclei for which
the resonance frequencies are near the excitation
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frequency v. The shape of the V.(v) spectrum does
practically not depend on the amplitude of the RF
pulses.

The frequency range of the V;.(v) spectrum is
much narrower than the one of the V.(v) spectrum
and it is located in the range of the frequencies:
Vo — vV, > v >V + 2v, [13,20]. The shape of the
NMR spectrum V5. (v) depends not only on the
time interval T between the RF pulses but also on
the amplitude of the RF pulses. This fact reflects the
multiquantum nature of this echo signal. As was
mentioned in the introduction the multiquantum
echo signal at t, = 37 is very sensitive to the excita-
tion conditions of the quadrupole nuclei **Cr by
the RF pulses [13-15].

The transverse relaxation times of the echo sig-
nals were determined by observing the decay of the
spin echo signals as a function of the time 7 for fixed
values of amplitude and carrier frequency of the
exciting RF pulses. From our experiments it fol-
lows that the amplitudes of the echo signals at
t. =t and t, = 37 are decreased exponentially as
the pulse interval ¢ increases (t = 10 ps). The ob-
tained frequency dependence of the relaxation time
T,(t,v) of the echo signal observed at t, =1 is
shown in Fig. 2. The experimental frequency
dependence of the relaxation time T,(3t,v) of
the echo signal observed at t, = 37 is shown in
Fig. 3.

3. Analysis of experimental results

In this section we shall analyze the obtained
experimental results by using the developed in
the appendix theory of the relaxation of the
two-pulse echo signals. The main assumption of
our theory is the assumption that the time fluctu-
ations in the electron magnetization due to the
fluctuations in the hyperfine and quadrupole inter-
actions lead to the relaxation of the spin echo
signals.

3.1. Hamiltonian of quadrupole nucleus in magnetic
solids

The Hamiltonian of a quadrupole nucleus in
magnetic solids contains the hyperfine interaction

T2 (7,v) {us]

400

200

40 42 44 46

Frequency v [MHz]

Fig. 2. Frequency dependence of the relaxation time T,(z,v) of
53Cr nuclei in Cdg.o85Ag0.015CraSes at T = 4.2 K. The solid
lines are the theoretical curves obtained from the best fit of Eqs.
(24)-(26), the result of our theory, to the measured values of
T,(t,v). Curve 1 is the dependence T,(z,v,); curves 2 and 3 are
the dependences T,(t, v,) and T,(z, v3). Curve 4 (broken line) is
given by Eq. (49).

Hamiltonian and the quadrupole interaction
Hamiltonian and can be written as [1,10]

H = Hyp + Hgq, (3)

The hyperfine interaction Hamiltonian in the
case of axial symmetry of the hyperfine magnetic
tensor has the form (7 = 1)!°

Hyp = — oI, — 0,(3cos*> 8 — 1)I, — 3w, sin(20)I...

(4)

The frequency w; is determined in magnetically
ordered substances by the isotropic hyperfine mag-
netic field (HF) at the site of the nucleus; w, is
determined by the anisotropic HF field at the nu-
clear site. The angle 0 in Eq. (4) is the angle between
the principal axis of the HF interaction tensor and
electron magnetization direction M,.
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Fig. 3. Frequency dependence of the relaxation time T,(3t,v,)
of *3Cr nuclei in Cdg 955A80.015Cr28e, at T = 4.2 K. The solid
line is the theoretical curve obtained from the best fit of Eq. (38),
the result of our theory, to the measured values of T,(3t,v,)
(black circles). The broken line is the curve $T,(t,v,) with
parameters defined from curve 1 in Fig. 2.

Assuming the symmetry of the electric field
gradient (EFG) tensor at the site of the nucleus is
axial too and the principal axis of the EFG tensor
coincides with the principal axis of the HF tensor
we may write the quadrupole interaction Hamil-
tonian in the form (h = 1) [10]

II+1
Hg = %(3 cos?g — 1)[13 - %}

+ ‘%Q sinQO)I.1, + II.)

+ % sin? 0% +I2), (5)
where wq = 3eqQ/41(2I — 1) is the quadrupole in-
teraction constant of the nucleus [10].

In the Hamiltonians Hyr and H, the z-axis is the
quantization axis for the nuclear spin and in mag-
netically ordered materials this axis coincides with
the direction of the electron magnetization
M, [1,10].

Now we assume that the temporal fluctuation of
the interaction Hamiltonian (3) arises from the

thermal fluctuations of the electron magnetization
vector M, [17-20]. Neglecting the fluctuation in
w, we may write the interaction Hamiltonian H(t)
as a sum of static and time-dependent parts
[17-19]

H(t)=H, + Hy(1). (6)
The static part of H(t) has the form
Hy = —wol, — w,(3cos?8, — DI,

+22(3c08 0 — 1)[13 — @] ™

where wo = w;(t) and 6, = 6(t) are the time-aver-
age values of w;(t) and 0(r).

The time-dependent part in the Hamiltonian H(t)
contains (wo terms

Hy(t) = Hyo(6) + Hynol0). (8)
Here H,(t) is the secular part of H,(t)

3
H (1) = — dai(DI; + {30)2.1: - %

x [13 _u ; U}}sin(wo) 50(1). ©)

In Eq. (9) wi(t) = w;(t) — we describes the fluc-
tuation in the isotropic part of the hyperfine mag-
netic field and 60(t) = 0(t) — 0, describes the
fluctuation in the direction of the electron magnet-
ization vector M.

The nonsecular part of the Hamiltonian H,(t)
has the form [19]

H, ()= [ — 3w, cos(20,)1; + wq c08(26,)

x(LI,+1.1.) +%Sin(2eo )12 +13)]59(z).

(10)

In Eq. (7) we omitted the static nonsecular terms
of the interaction Hamiltonian because in magneti-
cally ordered substances the term ( — wq1;) in the
Hamiltonian H, is the largest term [1,2].

We shall assume that the fluctuations of w;
and ¢ are Gaussian stochastic processes and the
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correlation functions of these values are of ex-
ponential type

Sa(t)ow;(t’ — 1) = a2e e, 11)
30(t)00(t — 1) = oFe I, (12)

In Eq. (11) 7., is the correlation time of the
fluctuating frequency w;(t); 62 = dwi({t) — w? is the
mean-square fluctuation of the random variable
w;(t). In Eq. (12) 1.4 is the correlation time of the
time fluctuating angle 0(t); o3 = 80%(t) — 03 is the
mean-square fluctuation of the random variable
0(z).

In Sections 3.2 and 3.3 we shall analyze the
relaxation of the two-pulse echoes of quadrupole
nuclei with spin I = 3. We shall assume that the RF
pulses excite only those nuclei which have reson-
ance frequencies at the carrier frequency of the
exciting RF pulses.

3.2. Secular relaxation of spin echo signals

In this subsection we consider the relaxation of
the two-pulse echoes of quadrupole nuclei with
spin I = 3 taking into account only the secular term
H(t) in the fluctuating Hamiltonian (8). As was
mentioned in the introduction, for a quadrupole
nucleus with spin I =3 the two echo signal at
t. =t and t, = 37 can be formed [12-16]. At first
we consider the relaxation of the echo signal V(v).

3.2.1. Relaxation of V (v) echo signal

If the carrier frequency of the RF pulses coincides
with the frequency defined by Eq. (1) and so the RF
pulses selectively excite only the NMR transitions
+ 4o ¥4, the quantum values a,b,¢,d in Eq.
(A.28) are [13,17-19]

 b=d=

=

a=c= —

(13)

=

Using these quantum numbers we obtain from
Egs. (A.28)-(A.32) the following expression for the
amplitude V.(v,) of the two pulse echo signal ob-
served at t, = 1

2
V‘((Vl) = Vr(O’ vl)expli - TITT\H):|’ (14)

where
V0, v1) = ¢ = AR BYGIR LRT Y| — 3
xSRI GI L =3 (15)
is the amplitude of the echo signal at 1 — 0 and
T;sl(r,vl) = —2J 12 -12,12,1,2(0)
+ J12,1/2,1/2,1/2(0)
+J 1212~ 12,-12(0)- (16)

is the relaxation rate of the echo signal ¥V (v,). The
subscript (s) in T5,' denotes that the source of the
echo signal relaxation is the secular fluctuating
terms of the hyperfine and quadrupole Hamil-
tonians.

Inserting the secular Hamiltonian H(r) in Eq.
(A.18) and using the correlation functions (11) and
(12) we have from Egs. (A.30)-(A.32)

T3t v) = 62370 + 9020370 SIN*(26,). 17

If the carrier frequency vge of the RF puises
coincides with the frequency v, or v; defined by Eq.
(2) and so the RF pulses selectively excite only the
NMR transitions + 3> + 4, the quantum values
a,b,c,d in Eq. (A.28) are [13,17-19]

VRr = V2, a=0=%a b=d=%a (18)

VRE =V, a=c= —3, b=d= -4 19)

Using these quantum numbers we obtain from
Egs. (A.30)-(A.32) the following expression for the
relaxation rates of the echo signals V.(v,) and
Ve(vs):

T;sl(rs "2,3) = G’z)rcm + g(wa i wQ)ZJgICB Sinz(zgo)-
(20)

From Egs. (17) and (20) it follows that the relax-
ation rates of the echo signals V. (v;) (i=1,2,3)
have the same angular dependences and may be
written as

T3l (r,v;) = A + B; sin?(20,), (21)
where
A = Gitcw (22)
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and
Bl = 9(1)30'57:67
B3 =9w, O)Q)Zﬂg‘fco- (23)

Using Egs. (1) and (2) and the above-mentioned
values vg, v, and vg, it is possible to replace in Eq.
(21) the variable 6, by the frequency v;

4295 MHz < v, <44.6 MHz

4 ) — v
T{sl(r,vl)=A+§Bl<2—‘1 ‘°>

Va

« (1 n w) (24)
va

43.68 MHz < v, <44.79 MHz

_ 4 vy — ¥
Tilov,) = A+ 532(2 e vg)

x (1 g 2" > 25)
va + vQ

41.11 MHz < v; <45.52 MHz

4 .
Tyl(z,v3) = A +_Bs(2 _5 ”")

9 Ya = Vg
x (1 n @> (26)
Va — Vo

The solid lines shown in Fig. 2 represent the
theoretical frequency dependences obtained from
the best fit of Eqgs. (24)-(26) to the observed values
of T,(z,v). Asit is seen, the theoretical curves agree
well with the experimental results. The fitting para-
meters are

021, = (1.65 + 0.02)x 1

2
0 %, @7

03T = (45 £03)x 10711 5, (28)

From Fig. 2 we see that there is a discrepancy
between the experimental and theoretical T,(t,v,)
values at vi & vy + (v,/2) or at 6, ~ n/4. We shall
consider the possible source of this discrepancy in
Section 4.

3.2.2. Secular relaxation of multiquantum V .(v,)
echo signal

Now, we consider the relaxation of the echo
signal at t, = 3t retaining in the fluctuating Hamil-
tonian (8) only the secular term H(f) too. Multi-
quantum echo signal V5, observed only when the
carrier frequency vgr of the RF pulses coincides
with the frequency v, [13-15]. For this echo signal
the quantum values a,b,¢,d are [13,17-19]

ol

a=—3% b=3 c= -3 d=1i (29)

Using these quantum numbers we have from
Eqs. (A.28)-(A.32) the following expression for the
amplitude of the echo signal V3, (v)

i ] (30)

Va(vi) = V3.0, Vl)eXP|: T TG
25\ V1

where
V30.v1) = { = HR.B)>GIR IZRT ' — 3)
X = 3R M| - 1) 31
is the echo signal amplitude at T — 0 and
TZ;‘GT, Vi) = — %Js/z,s/z, -3/2,-3/2(0)
—3J - 12~ 12.1)2.1/2(0)
+2l73/2.32,3/2,32(0)
+J-3/2,-3/2,-3/2,~3/2(0)]
+ Zai[J—uz,— 12.-1/2,-1,2(0)
+ J12,102,02,172(0)] 32)

is the relaxation rate of the echo signal at ¢, = 31.

Inserting the secular Hamiltonian H,,(z) in Eq.
(A.18) and using the correlation functions (11) and
(12) we obtain from Egs. (A.31) and (A.32)

T7'(3t,vy) = 3T3Mx, v,) = 34 + 3B, sin?(26,).
(33)

The broken line in Fig. 3 represents the theoret-
ical frequency dependence of T,,(31, v;) defined by
Eq. (33). As it is seen only two experimental points
(the open circles) coincide with this frequency de-
pendence. Eq. (33) does not explain the character-
istic frequency dependence of T,,(3t,v,), that is,
the value of T,,(37,v,) takes a maximum value at
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vy & vy + (v,/2) or at 8, = n/4. In order to under-
stand the source of this discrepancy we shall
consider in Section 3.3 the rclaxation of thc multi-
quantum echo signal V3.(v) retaining in the fluctu-
ating Hamiltonian (8) the nonsecular terms too.

3.3. Nonsecular relaxation of multiquantum V 3.(v{)
echo signal

Using the full Hamiltonian (8) we obtain the
following expression for the amplitude of the echo

signal Vs (v, )

Vi) = V30w, )exp[ - L], (34)
T,(317,vy)

where V3.(0,v,) is defined by Eq. (31) and

T3 '(37,v1) = T2'Gt,v1) + Ton(B3r.v1). (35

Here T3.'(37,v,) is the secular relaxation rate de-
fined by Eq. (33) and

3 1
—1 - 2.2 2 20 -
T2n5(31"’v1] 9w366166 cos ( 0)|:21 + (27TV1 Tcl))z
1 1
23 s
18 T 2 B

1 o2 1
+ EG +29 1+ (21wzrc(,)2]

3 .
+ Rwé GaTeo SIN*(20,)

1
X
{1 + [27(vy + v2)Teo]?

q
T Ao, £ V3)‘L’co]2} (36)

is the nonsecular relaxation rate of the echo
V3.(v1). Here € = wg/m,.

We proceed to discuss only the important special
case of the so-called extreme narrowing limit
(2nvty < 1) for which all spectral density J,pcq(w)
converge to J,,.q(0) [10]. It is expected that the
nonsecular relaxation can yield a significant contri-
bution to the full relaxation rates of the quadrupole
echoes only in this limiting case [10].

For the case of extreme narrowing limit we have
from Eq. (36)

T3i(31,v1) = 27202 1.4 cos2(20,)
+ 2wd 0511 + 15c08%(205)]. (37)

Combining Eqgs. (37) with (33) we obtain the
following expression for the full relaxation rate of
the spin echo V3. (v,):

T5'(3%,v,) = C + Dcos*(20,), (38)
where

C =30%1,, + [24(2)";) g ﬂ% (39)
and

D = %w§oite. (40)

The solid line in Fig. 3 represents the theoretical
frequency dependence of T,(31,v,) defined by Eq.
(38). As it is seen the frequency dependence (38) well
describes the observed dependence of T,(37,v)).
The obtained fitting parameters are

d2
C=(67+02)x 103%, @1
dZ
D = (233 + 09)x 103%. 42)
4. Discussion
The obtained results suggest that in

Cdy.085A80.015Cr,Se, there are two kinds of the
53Cr nuclei, which have quite different relaxation
times. The nuclei of the first kind >3*Cr(I) give the
main contribution to the echo signal V' (v). In the
echo signal V;.(v) these nuclei are observed only at
v > 44.5 MHz (the open circles in Fig. 3). The
nuclei of the second kind **Cr(Il) give the main
contribution to the echo Vi,(v) (the black circles
in Fig. 3).

As shown in the analysis in Section 3.2.1, the
relaxation of the spin echo signals of the *3Cr(I)
nuclei was well explained by the secular theory of
the spin echo relaxation. The secular approxima-
tion is applicable when 2mtv; 7 > 1 [10]. The value
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of 7.4 could not be obtained from our experiments.
However, we may estimate this value assuming that
v; ~ 44 MHz and 2nv;7,4 > 10. Then we obtain

Tcg(SSCI‘(I)) >4x107 % s, (43)

Assuming that ., & 1, we have from Egs. (27)
and (28)

53
w <32 kHz (44)
T
and
6o(>3Cr(I) < 2°. 45)

The relaxation of the spin echo signal V3,(v) of
the *3Cr(II) nuclei was well explained by the non-
secular theory of the spin echo relaxation. In the
extreme narrowing limit we have 2nv;7 4 < 1. If we
assume again v; ~ 44 MHz, then from condition
2nvitee < 0.1 we obtain

16(P*Cr(Il) < 4x 1071 s. (46)

Using Egs. (41) and (42) and assuming that
C > [24(w,/wq)* + 51D/5 the following condition
is easily obtained
,(*3Cr(11))
qo(P*Cr(ID)

\ <02, 7)

From comparison of Eqgs. (46) and (43) it follows
that the frequency (t') of the fluctuation in the
direction of the electron magnetization M, for the
nuclei *3Cr(II) exceeds the one for the nuclei
33Cr(D).

The echo signal V;3.(v,) is observed in the same
frequency range as the echo signal V.(v;). This
experimental fact indicates that the value of @, for
the nuclei *3Cr(IT) is of the same order as the one
for the nuclei 33Cr(I). Then, from the condition (47)
it follows that the electric field gradient (wq) at the
sites of the nuclei **Cr(II) exceeds the one for the
nuclei **Cr(I) (for the nuclei *3Cr(I) we have
|, (P Cr(D)/wo(**Cr(D)] = 0.6).

In order to estimate the contribution of the
nuclei **Cr(II) to the echo signal V. (v) we con-
sidered the nonsecular relaxation of the echo signal
V.(v,). The following expression for the nonsecular

relaxation rate of this echo for the case of the
extreme narrowing limit has been obtained:

TZ_ 1(‘[,\)1) = ag)fcw + [960:% + %wé](’grw
+ B(0? + wd)oite c0s (20,).  (48)
Using Egs. (39) and (40) we have from Eq. (48)

T3 '(z,v1) =3C + 45D

W 2
+ [1 + 4(J> }D cos*(20,),  (49)
(&)

where C and D are determined by Egs. (39) and (40).

The broken line in Fig. 2 represents the theoret-
ical curve (49) with parameters C and D defined by
Eqgs. (41) and (42) (jw,/wq] = 0.2). As is seen, the
relaxation time of the echo signal V (v,) from the
nuclei 33Cr(IT) is not smaller than the one from
nuclei *3Cr(I) at v; & vy + (v4/2). So, in this fre-
quency region the nuclei **Cr(II) give also the
contribution to the echo signal V. (v,). This fact
explains why there is the discrepancy between the
experimental and theoretical T,(tr,v;) values at
vy & Vo + (v,/2).

It is reasonable to assume that the existence of
two kinds of 33Cr nuclei in Cdg ¢55Ag0.015Cr,Seq
is connected with the doping of CdCr,Se, with
Ag”" ions. The doping of the cadmium selenoch-
romite with silver ions produces, as a result of
electric charge compensation, Cr** impurities. It is
obvious that the electric charge defects Ag* and
Cr** induce distortions of the crystal lattice and
lead to the increase of the electric field gradients
(wq) of the nuclei **Cr sited near the defects. So, the
53Cr nuclei are divided into two kinds of nuclei:
the nuclei **Cr(I) are the nuclei located far from the
defects and the nuclei **Cr(II) are the nuclei sited
near defects.

The different relaxation times of the nuclei
53CH(I) and 33Cr(Il) are probably connected with
the dynamical nature of the Cr** defects [20]. We
assume that electron exchange between the Cr**
and Cr®* ions located inside the defect region leads
to rapid fluctuations in the local electron magnetiz-
ation. So, the nuclei **Cr(I1) located in these defect
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regions “feel” the rapidly fluctuating electron
magnetization, due to the hyperfine and quadru-
pole interactions. The rate of this fluctuations high-
ly exceeds the one for the nuclei **Cr(I) which are
far from defects.

5. Conclusion

We measured the relaxation times of the two-
pulse spin echo signals of the *3Cr nuclei in the
ferromagnetic ~semiconductor  Cdg.0s5A80.015
Cr,Sey at the temperature T = 4.2 K. The relax-
ation rates T'5 '(z,v;) and T3 '(3z,v,) of the echo
signals at t, = 7 and . = 3t exhibit characteristic
frequency (angular) dependences. The dependence
of the relaxation rate T3 '(z,v;) on the angle , be-
tween the local trigonal symmetry axis and a direc-
tion of the electron magnetization vector M, has
the form: T3 !(t,v;) = 4 + B, sin*(20,). The angu-
lar dependence of the relaxation rate T5 !(37,v,)
has the form: T; }(3t,v;) = C + D cos?(26,).

In order to explain the experimental results we
developed the theory of the relaxation of the two-
pulse echo signals. The main assumption of this
theory is the assumption that the temporal fluctu-
ations in the electron magnetization vector M, lead
to the fluctuations in the hyperfine and quadrupole
interaction Hamiltonians. From analysis of the ex-
perimental results follows that the secular approxi-
mation of the developed theory well explains the
observed frequency dependence of T (t,v;). The
experimental frequency dependence of T3 !(37,v,),
however, could not be explained by the secular
theory of the spin echo relaxation. We calculated
the relaxation rate T3 '(3t,v,) including the non-
secular term of the fluctuating hyperfine and quad-
rupole Hamiltonians. It was found that nonsecular
theory of the spin echo relaxation well explains the
experimental frequency dependence of the relax-
ation rate T3 *(37,v,).

The existence of two different channels (“secular”
and “nonsecular”) for the relaxation of the echo
signals  V.(v) and Va/(v) suggest that in
Cdo.085A80.015Cr,Sey there are two kinds of the
*3Cr nuclei. The quite different relaxation times of
these nuclei (°*Cr(I) and *3Cr(Il)) we explained
assuming that the nuclei **Cr(II) are located in the

defect regions which contain the ions Cr** and
Ag™. The nuclei *3Cr(I) located far from the defect
regions. In the defect regions the fast electron ex-
change between the Cr** and Cr** jons induces
rapid fluctuations in the local electron magnetiz-
ation. These rapid fluctuations in M, lead to rapid
fluctuations in the hyperfine and quadrupole
Hamiltonians of the nuclei >*Cr(II) located in the
defect regions. The correlation times t.,, and 7., of
these fluctuations are very small in comparison
with the inverse values of the NMR frequencies
(2mvite, <€ 1; 2nv;1e < 1). This fact explains why
the nonsecular relaxation theory well describes the
experimental frequency dependence T '(31,v,).
The calculated nonsecular relaxation time of the
nuclei **Cr(Il) T,(z, v, ) is not small in comparison
with one for the the nuclei **Cr(I) in the frequency
region v; & vy + (v,/2). So, the nuclei **Cr(II)
could be observed by the spin echo V., (v;) at
Vi X Vo + (va/2).

The nuclei Cr(I) are located far from the dynam-
ical defects Cr**«Cr** and so the influence of the
electron exchange between the Cr** and Cr® " ions
on the fluctuations in the hyperfine and quadrupole
Hamiltonians of these nuclei is small 2rv;7., > 1;
27yt > 1). This fact explains why the experi-
mental frequency dependence T'5 !(r, v) of the nuclei
3Cr(I) was well explained by the secular theory of
the spin echo relaxation. From the calculated fre-
quency dependence of the relaxation time
T5(31,v,) for the nuclei **Cr(I) it follows that this
time is small than the one of the nuclei 33Cr(I)
practically in the whole frequency region. So, the
nuclei *3Cr(Il) give the main contribution to the
echo signal observed at ¢, = 31.

In conclusion, we point out that the investiga-
tions of the relaxation of the spin echo signal V(v)
in Cd, _,Ag.Cr,Se, with various contents of the
Ag ions demonstrate that the rate T3 '(z, v;) of spin
echo decay increases with increasing Ag content
[20]. This fact indicates that the increase in the
impurity concentration should enhance the ampli-
tudes (62, 03) and the rates (to,%, 755') in the fluctu-
ations of the local electron magnetization in the
region where nuclei 33Cr(I) sit.

In order to have a better understanding of the
physical mechanism of the temporal fluctuation in
the electron magnetization M, further experiments
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under different conditions (temperature, external
static magnetic field, various contents of Ag* ions)
are necessary.
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Appendix. Relaxation of two-pulse echo signals

The Hamiltonian (h = 1) of a spin system we
shall consider consists in general of two terms

H(t)=H, + H, (1) (A1)

The first part H, of the Hamiltonian is obtained
by averaging H(t) over the time

Hy = H(t) = lim 1 J tH(t/)dt’, (A2)

t— w) o

and the second part H,(t) is the fluctuating part
Hy () = H() — H(0). (A3)

Let us consider a response of a spin system to
a two-pulses sequence R, —t — R, —f, where
R, and R, describe the actions of the first and
second RF pulses. We shall assume that during the
action of RF pulses the fluctuating part H,(t) of the
Hamiltonian may be omitted. We choose also as
our starting point the following well-known equa-
tion for the reduced spin density matrix p*(t)
[10,22-24]

T

p*(t) = p*(0) — j dr'

]

X L [Lo*(0), HY (1)1 Hi( — 1")] dt". (A4)

The approximations inherent in Eq. (A.4) are
thoroughly discussed by Abragam [10]. Eq. (4) is
valid if the changes in the density matrix are small
on the time scale 7, characteristic for the random
fluctuations  of the  Hamiltonian H,(f)

(IH2®lIt2 < 1) and 1, <.

In Eq. (A.4)
pH() = eHoip(t)e ™o (A.5)
and
Hi(t) = ™' H (e ™", (A.6)

The general expression for the signal V(z,1) fol-
lowing after a two-pulse sequence is given by [10]

V(z,t) ~ Tr{p(r,0)l. }, (A7)

where p(z,t) is the spin density matrix averaged
over the random fluctuations of the Hamiltonian
H(1).

Using Eq. (A.4) it is easy to obtain the following
expression for the averaged spin density matrix

plt, by

Pt 1) = Ao(z,0) — Ay (1, t) — Ay(1,1). (A.8)
Here

AO(‘L', l) — e‘iHn1Rze—iH(,rp(0)eiHocR2— leiH(,t7 (A9)

Al(T, [) — e—iHorRze—iHur{J dr’

0

x f . LLo(0). HY(t)], HY(t — I”)]dt”}

x elHn ZRZ— lenH(,t’

(A.10)

t 0
Ay(z) = e_i"”U dl’f [[R,e™ " *p(0)e ™R, %,
0 0

Hi(0)) Hi(l — t”)]dz”} xe (A1)

and
p(0) =R, IR (A.12)

is spin density matrix after the first RF pulse.
The first term in Eq. (A.8) describes the response
of the spin system to the two-pulses sequence in the



334 G.N. Abelyashev et al. | Physica B 292 (2000) 323-336

case when the fluctuations of Hamiltonian (A.1) do
not exist (H,(t) = 0). Exclusively this term in the
average spin density matrix determines the condi-
tions at which the echo signal may be formed.
Substituting only the term Aq(t,t) into Eq. (A.7)
yields

Tr{do(r.0l .} = 3 <alRy|b)<blp(0)lc>
ab,c.d
x CelR3 dy<dIT s |ay

x eilE ~E)t—(E — E. )r],

(A.13)

where E, and |a) are the eigenvalues and eigenfunc-
tions of the Hamiltonian H,
Hylay = E,la). (A.14)

From Eq. (A.13) it follows that an echo signal
will be observed at the time ¢t = ¢, when ¢, is equal

(A.15)

Consider now the term A;(z,t) in Eq. (A.8). Using
Eq. (A.14) the matrix element {a|A(z, t)|d) can be
written as

alAs (. old> = Y CalRa bY<bIK(Dcy<{c|R 3 d)

b,
x expli[(E; — E )t — (Ey — Ec)tl},
(A.16)

where

(4]

BK@Icy = Y <blp(O)ed f G~ gy
e.f
" J Gop et )55 =0
0
-5 <8|P(O)|f>J QB HE ~E~E) 4y
e f o

.
" J Greselt's )" ® ~E0F 41"
0

— 3 <elpOls f QB T, ~E B gy
e, f 0

B}
x j chbe(t'a lﬂ)ei{E“ —E" dt”
0

+2 <f|ﬂ(0)|c‘>j B~ Ep
e f o

el
XJ Gepelt. t//)ei(E(.—E,,)z”dtn (A17)
0

and

Guapealt's1") = <alH ()03l H (1 — )ld> (A1)

are the correlation functions of the random Hamil-
tonian H(t).

If the random process leading to the fluctuations
of H,(t) is stationary the correlation functions
Gapealt’,t") depend only on ¢” [10]. Introducing the
frequencies w,,
wg =E, —E, (A.19)

and defining the spectral density functions as [10]

Japea®) = J Gapea(t”)" dt”, (A.20)
0

we obtain

T

<b|ﬁr)|c> = z {<b|p(0)|e>‘]€ffc(wcf)f eioat’
e f 0

- <e|p(0)|f>[‘]befc(wcj') + chbe(web)]

t
x J‘ ei(u)»., — o)t dr

0
+ {flpO)erJ e_rbe(web)Lei“”" dt’}.

(A21)

In Eq. (A.21) the terms [§ exp(iwt)dt’ with @ # 0
are unimportant, because these terms oscillate with
high frequencies and on the time scale (0,7) give
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zero [10]. Retaining in Eq. (A.21) only the terms for
which @ = 0 gives

BIK(DIe) = tf — <blp(O)]e > [2T ppec(0)
+ Z [Jerpelwes) + J ppps(@pp)]
f

X [<blp(O)lc> — Gpe{f1p(ONf D]}
(A.22)
Inserting Eq. (A.22) into Eq. (A.16) we obtain

alA;(z, 0ld) = T{Z <alR2[b)<blp(0)lc><cIR; *|d>
b,c

X ei[(Eu —E.)t—(E, — E. )t]I: _ 2Jbbcc(0)
+ Z [Jerpeleoes) + J[bbf(wfb)]:|
f

— e BTEXY CalR,|b) {clp(Oe)
b,
X <b|R; l‘d>[‘]bccb(wbc)

+ Jcbb(‘(a)ch)]}' (A.23)
Here we used the following properties of the
spectral density functions [10]:

Jabrd ((H) = chab ((U)-

(A.24)

Eq. (A.23) contains two types of the high-fre-
quency oscillate terms: exp[i(wg,t — w,.7)] and
exp(imy,t). For the time ¢ = ¢, the first exponential
according to Eq. (A.15) equals unity for all times z.
The second exponential terms depend on t only and
may be omitted at the echo signals consideration
[10]. Omitting these oscillating terms we may write
Eq. (A.23) in the form

a4 (z,0ldy = T{Z <alR; |b><blp(O)lc><cIR; 'Id>

b,

X |: - 2Jbbcc(0) + Z [chfc(wcf)
s

+ Jfbbf(wfb)]:|} (A.25)

The same consideration for the term A,(t,t) in
Eq. (A.8) gives the following expression for the
matrix element {a|A4,(z, t)|d>:

(a4, (z, 0)ld) =1, {Z <alRz1b)<{blpO)lc)><IR3 'Id>

b,

X [ = 2J00aa0) + Y. s salwes)
f

+ Jfaaf(wfu)]:'}- (A.26)

Inserting Eqs. (A.9), (A.25) and (A.26) into Eq.
(A.8) yields for the matrix element <{a|p(t, t)|d>

Lalp(r.0)d) = <alRz|bY<blp(O)c>{c|R3 '|d)
b,c

X {1 - TI: - zjbbu‘(o)

+ Z [Jerrelwres) + Jfbbf(wfb)]]
7
- le|: — 2 00a(0) + 3. [y paleay)
7

+ Jj-a,,,(wfa)]j|} (A.27)

Using Eq. (A.27) we obtain from Eq. (A.7) the
following general expression for the two-pulse echo
signal:

V(T» te) = Z AabcdRabcd(rv Ze)~

ab,c.d

(A.28)

The matrix elements 4,4 in Eq. (A.28) are inde-
pendent of the time fluctuaions of the interaction
Hamiltonian H,(t) and have the form

Aasea = <alR,|[b><bIRy I.RT Hc>
eR3 Mdy<dIT < |a>.

The relaxation of echo signals is described by the
matrix elements R ,.4(7,t)

(A.29)

Rabcd(rs t) =1- TT;b}‘ — 1l T;a}i

~exp( — tTop = £ T, (A.30)
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where

Tooe = — 2ppee(0) + ¥ [Jps (@ 6) + Jeprelors)]
7

(A31)

and

Trai = — 2J 4004(0) + z [asral®rp,) + Jarra(wqr)].
7

(A32)
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