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The transformations of the lineshape with a fluctuating frequency for the Kubo-Anderson oscillator
are considered. Assuming that the frequency of the oscillator fluctuates between two values and the
rate of this fluctuation is a stochastic function of the time the analytical expression of the lineshape is
obtained. It is assumed that the stochastic fluctuations of the potential barrier for the Kubo-Anderson
oscillator lead to the stochastic fluctuations of the frequency. The transformations of the lineshape are
extremely sensitive to the function, which describes the distributions of the frequency fluctuations.
The obtained expression is applied to the different distributions of the fluctuation frequency rate. It
is shown that a unusual type of the motional narrowing phenomenon is observed for the log-normal
and log-Lorentzian distribution.
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1. Introduction

The stochastic oscillator two state jump model with
a stochastic fluctuating frequency has found wide ap-
plications in condensed phase physics ranging from
magnetic resonance spectroscopy [1 – 12] and nonlin-
ear optical spectroscopy [13 – 17] to problems of deco-
herence and dephasing in spin-based solid state quan-
tum computers [18 – 20]. This model is described by
the Kubo-Anderson master equation of the form [2, 3]

ẋ = iω(t) · x, (1)

where the stochastic frequency ω(t) can take the value
of either ∆ or −∆.

The average solution of (1) has the form

〈x(t)〉 =

〈
x(0) · exp


i

t∫
0

ω(t ′)dt ′



〉
, (2)

where the symbol 〈· · · 〉 means an operation of aver-
aging over all realizations of the random process. The
function 〈x(t)〉 is the linear response function [21], and
for a stationary stochastic process the Fourier trans-
form of the correlation function (2) gives the lineshape
of the stochastic Kubo-Anderson oscillator [13 – 21].
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Assuming that ω(t) is a Poisson random variable
with the exponential sojourn time probability density
function (PDF)

ψ(t) = W · exp(−Wt), (3)

it is easily to show that the oscillator dynamics
is described by the stochastic Liouville equation
(SLE) [21 – 23],

dx(t)
dt

= [i∆ · Â+W · B̂] · x(t), (4)

where

Â =
[

1 0
0 −1

]
, B̂ =

[−1 1
1 −1

]
, x =

[
x1
x2

]
. (5)

In this case

〈x(t)〉 = p1x1(t)+ p2x2(t), (6)

where the initial distribution of the state ±∆ is de-
scribed by p1,2. The value W in (4) is an average rate
of frequency jump from one to another state.

The solution of (2) [or (4)] is well-known and
describes the well-known motional narrowing phe-
nomenon [1].
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Recently, using the continuous time random walks
(CTRW) theory [23, 24], the solution of (2) for the ar-
bitrary PDF ψ(t) has been obtained [13]. It has been
shown that in the case, when ψ(t) decays as t5/2 at
long times, new types of the resonance peaks and nar-
rowing behaviour have been observed [13 – 16]. How-
ever, the similar motional behaviour has been obtained
in the case, when it was assumed that the mean sojourn
time τ = W−1 fulfills the Arrhenius activation law

τ = τ0 exp(Ea/kT ), (7)

where the activation energy Ea is the stochastic vari-
able, driven by a bistable process of telegraphic
type [25].

In the present paper we consider the generalized
Poisson process, for which the probability of the oc-
currence of N jumps of the frequency ω(t) in the time
interval (0, t) is defined by the distribution

P(N, t) = exp
(
−

t∫
0

W (t ′)dt ′
)

1
N!

( t∫
0

W (t ′)dt ′
)N

. (8)

It is easy to show that in this case the dynamics of the
Kubo-Anderson oscillator is described by the SLE (4),
in which W is the stochastic function of the time. We
assume that the stochastic fluctuations of the poten-
tial barrier for the Kubo-Anderson oscillator cause the
stochastic fluctuations of the frequency W .

2. Lineshape Theory

We will assume that the value W in (4) is the
stochastic function of the time. The distribution of all
possible values W (t) is described by the function p(W )
and the jumps from one value, Wk, to another, Wm, are
independent and distributed uniformly over the time
with the density νC (the value νCdt determines the av-
erage jumps value in the time interval dt) (Fig. 1).

The solution of (4) can be easily obtained using the
method of the differentiation formulae [26]. Then we
obtain

dxk

dt
= i∆ · Â ·xk + B̂ ·xk+1−νCxk +νC · 〈W k〉 ·x0, (9)

where

xk = 〈W k(t) · x(t)〉. (10)

The Laplace transformation of (9) has the form

x̄k = νCL̂ · 〈x0〉 · 〈Wk〉+ L̂〈x0(0)〉+ L̂ · B̂ · x̄k+1, (11)

Fig. 1. Schematic presentation of the distribution func-
tion p(W ). The arrow designates the jump of the mean so-
journ time W (t) from the value Wk to the value Wm. The value
νC determines the density of these jumps.

where L̂ = [(z+νC)·Ê− i∆ ·Â]−1, Ê is the unity matrix,
and

〈W k〉 · 〈x0〉 =
∞∫

0

e−zt〈(W (t))k〉 · 〈x0〉 ·dt,

xk =
∞∫

0

e−zt · xkdt.

Using (11) we obtain

x(z) ≡ x0(z) = [Ê −νC · M̂]−1 · M̂ · x(0), (12)

where

M̂ = 〈(Ê −WL̂B̂)−1〉 · L̂
=

[
(z+νC + i∆)r(z)+q(z) q(z)

q(z) (z+νC − i∆)r(z)+q(z)

]
,

(13)

and

[Ê−νC · M̂]−1 =
1

1−νC[(2z+νC)r(z)+ 2q(z)]

{
Ê−νC

·
[
(z+ νC − i∆)r(z)+ q(z) q(z)

q(z) (z+ νC + i∆)r(z)+ q(z)

]}
.

(14)

In (13) and (14)

r(z) ≡
∞∫

0

dW · p(W )
(z+ νC)(z+ νC + 2W)+ ∆2 , (15)
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q(z) ≡
∞∫

0

dW · W · p(W)
(z+ νC)(z+ νC + 2W)+ ∆2 . (16)

Assuming that p1 = p2 = 1/2 and with the help
of (12) – (14) we obtain the final expression for the
lineshape function of a stochastic oscillator with two
state frequency modulations:

x(z) =
1

z+ ∆2 f (z)
, (17)

where

f (z) =
(z+ νC) · r(z)

1− [νC(z+ νC)+ ∆2] · r(z) . (18)

3. Discussion

At first we shall note that, if νC = 0 and p(W ) =
δ (W −W0), from (17) it follows the well-known re-
sult [1, 7, 9, 10, 18]

x(z) =
z+ 2W0

z(z+ 2W0)+ ∆2 .

In the case, when the stochastic process is a bistable
process of telegraphic type and p(W ) = 1

2 δ (W −W1)+
1
2 δ (W −W2), from (17) it also follows the known re-
sult [25]

x(z) =
1

z+ ∆2 f (z)
, (19)

where

f (z) =
{
(z+ νC)(z+ νC + 2W̄)+ ∆2}{

(z+ 2W̄)

·[(z+ νC)(z+ νC + 2W̄)+ ∆2]−4(z+ νC)σ2}−1
.

(20)

In (20)

W̄ =
W1 +W2

2
, σ =

W2 −W1

2
. (21)

In the next examples we will assume that the fre-
quency W fulfills the Arrhenius activation law:

W (t) = W0 exp
(
−E(t)

kT

)
, (22)

in which the fluctuated activation energy E is described
by the distribution function g(E).

We will also assume that the frequency νC, describ-
ing the fluctuations of the potential barrier E and so the

fluctuations of the frequency W , fulfills an Arrhenius
activation law:

νC = ν0 exp
(
−Eb

kT

)
. (23)

Now we consider three examples of the distribution
function g(E):

1) the function g(E) has an exponential form:

g(E) =
1

σE
exp

[
−|E − Ē|

σE

]
; (24)

2) the function g(E) has a normal (Gauss) shape:

g(E) =
1

σE
√

2π
exp

[
− (E −Ea)2

2σ2
E

]
; (25)

3) the function g(E) has a Lorentz shape:

g(E) =
σE

π · [(E − Ē)2 + σ2
E ]

. (26)

If the distribution of the activation energy E has an
exponential form, the distribution of all possible val-
ues W (t) is described by the log-exponential function

p(W ) =
kT

W ·σE
exp


−

∣∣∣kT · ln
(

W
W0

)
+ Ē

∣∣∣
σE


 . (27)

If the distribution of the activation energy E has a
normal (Gauss) form, the distribution of all possible
values W (t) is described by the log-normal function

p(W )=
kT

σE ·W√
2π

exp


−

(
kT · ln

(
W
W0

)
+Ē

)2

2σ2
E


. (28)

If the distribution of the activation energy E has
a Lorentz form, the distribution of all possible val-
ues W (t) is described by the log-Lorentz function

p(W ) =
kT

W ·π
σE(

kT · ln
(

W
W0

)
+ Ē

)2
+ σ2

E

. (29)

The results of our calculations are shown in Figure 2.
From this figure it follows that the temperature trans-
formations of the lineshape are extremely sensitive to
the form of the distribution function of the frequency
fluctuations. In the case, when the distribution of the
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(a) (b)

(c)

Fig. 2. The temperature transformations of the Kubo-
Anderson oscillator lineshape; x-axis, frequency ω; y-axis,
line amplitude; ∆ = 21.7 kHz, Ea = 73 kJ/mol; σE = 0.2 ·Ea;
W0 = ν0 = 1.2 · 1012 s; Eb = Ea. (a) p(W ) is described
by the function (27). (b) p(W ) is described by the func-
tion (28). (c) p(W ) is described by the function (29). The
dot-dashed lines represent the line shapes at (a) T = 455 K
and (b, c) T = 420 K, the continuous lines represent the line-
shapes at (a) T = 500 K and (b, c) T = 455 K and the dotted
lines represent the lineshape at T = 550 K.

activation energy E has the exponential form (24),
the temperature transformations of the lineshape re-
flect the well-known phenomenon of motional nar-
rowing (Fig. 2a) [1]. At the same time, in the cases,
when the distribution of the activation energy E has the
Gauss (25) or Lorentz (26) form, the temperature trans-
formations of the lineshape have unusual behaviour:
there are three peaks at ω = ±∆ and ω = 0 in the slow
modulation region (νC ≈ δ ). As was mentioned above
in [13] this additional peak has been obtained assuming
that the sojourn time probability density function ψ(t)
decays as t5/2 at long times. For the fast modulation
case we again observe only a single peak at ω = 0.

4. Conclusion

We considered the temperature transformations of
the lineshape for the Kubo-Anderson oscillator with

a fluctuating frequency. In our considerations we as-
sumed stochastic fluctuations of the frequency being
the result of stochastic fluctuations of the potential bar-
rier for the Kubo-Anderson oscillator. From the re-
sults obtained it follows that the temperature trans-
formations of the lineshape are extremely sensitive
to the distribution function of the frequency fluctua-
tions. In the case, when the distribution of the activa-
tion energy E has the exponential form, the tempera-
ture transformations of the lineshape reflect the well-
known phenomenon of motional narrowing. How-
ever, unusual temperature transformations of the line-
shapes have been observed in the slow modulation
region (νC ≈ δ ) for the cases, when the distribution
of the activation energy E has the Gauss or Lorentz
form. In these cases there are three peaks at ω = ±∆
and ω = 0.
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