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a b s t r a c t

The analytical solution for the Kubo–Anderson oscillator with a fluctuating frequency o for arbitrary

distribution function p(o) has been obtained. The obtained theoretical expression has been applied to

consideration of some dynamical problems of solid state NMR, namely (1) dynamical transformation of

NMR line shape and spin-echo signal and (2) the temperature transformation of the second moment of

NMR line for the case, when the potential barrier for the mobility of magnetic nuclei is a stochastic

function of time.

& 2008 Published by Elsevier Inc.

1. Introduction

The two-level system with a stochastically fluctuating fre-
quency has found wide applications in condensed phase physics
ranging from magnetic resonance spectroscopy [1–12] and non-
linear optical spectroscopy [13–17] to the problem of decoherence
and dephasing in spin-based solid state quantum computers
[18–20]. This model is described by Kubo–Anderson stochastic
differential equation in the form [2,3]

_x ¼ �i�ðtÞoðtÞ � x̄, (1)

where o(t) is stochastically fluctuating frequency and e(t) is a
non-stochastic function of time.

The formal average solution of Eq. (1) has the form

hxðtÞi ¼ xð0Þ exp �i

Z t

0
�ðt0Þoðt0Þdt0

� �� �
, (2)

where symbol /?S means averaging over all realizations of the
random process.

In pulse NMR experiments, the time decays of MX,Y and MZ

components of a nuclear magnetization are recorded. If e(t) ¼ 1,
the function hxðtÞi � hMX;Y ðtÞi describes the linear response
function or the free induction decay (FID), and for the stationary
stochastic process Fourier transform of the function of Eq. (2)
gives the NMR absorption line shape [1].

If e(t) ¼ 1 for 0ptot and e(t) ¼ �1 for tpt, the function
hxðt; tÞi � hMX;Y ðt; tÞi describes the spin-echo signal observed
when the ensemble of two-level systems is irradiated by two
pulses at times t ¼ 0 and t ¼ t [5,21].

The analytical solutions of Eq. (1) are well-known for the
cases when (1) the frequency o jumps between two frequencies
7D (dichotomous telegraphic process) [7,9,10], when (2) the
random process is diffusion Lorentz–Markov stochastic process
[5,21], and when (3) the random process is diffusion Gauss–
Markov stochastic process [5,21]. These analytical solutions have
been obtained based on the assumption of the specific form of the
distribution function p(o), which describes the set of o between
which the frequency jumps. In the case when the frequency
o jumps between two values, the function p(o) has a doublet
form. For Lorentz–Markov and Gauss–Markov stochastic pro-
cesses, the distribution function p(o) has Lorentz or Gauss forms,
correspondingly. However, in real situations the distribution
function p(o) is not Gaussian, Lorentzian or doublet-like one.

In present paper, the analytical solution of Eq. (1) has been
obtained for arbitrary distribution function p(o). In contrast to the
different methods of solving the stochastic Eq. (1), described in
literature [22–25], we use the method proposed in Refs. [25–28].
In our opinion, the using of this method in the case of stochastic
Kubo–Anderson process considerably simplified the procedure of
obtaining the solution of Eq. (1). The obtained theoretical
expressions are applied to consideration of some dynamical
problems of solid state NMR, namely (1) the dynamical transfor-
mation of NMR line shape and spin-echo signal and (2)
transformations of the second moment of NMR line for the case,
when the potential barrier for the mobility of magnetic nuclei is a
stochastic function of time.
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2. Theory

We will assume that the distribution of all possible values o(t)
is described by the function p(o) and the jumps from one
value o1 to the other value o2 are independent and distributed
uniformly over the time with density nC (the value nC dt

determines the average jumps value in the time interval dt)
(Fig. 1). This stochastic process is called in the physics as the
Kubo–Anderson process (see Ref. [26]). The solution of Eq. (1) can
be obtained by the different methods [22–26]. Now we will show
that for the Kubo–Anderson process the solution of Eq. (1) can be
easily obtained using the so-called method of the differentiation
formulae [26–28]. As it was shown in Refs. [25–28] for the
Kubo–Anderson processes, the differentiation formulae have the
form

d

dt
hxki ¼ �nChxki þ nC � hx0i � haki þ ak qx0

qt

� �
. (3)

Here k ¼ 0, 1, 2, y

ak ¼ ½i�ðtÞoðtÞ�k, (4)

xk ¼ ak � x0, (5)

and x0�x.
Inserting Eq. (1) into Eq. (3) we obtain

d

dt
hxki ¼ �hxkþ1i � nChxki þ nC � haki � hx0i. (6)

The Laplace transformation of Eq. (6) has the form

s� xk � hxkð0Þi ¼ �xkþ1 � nCxk þ nC � bk, (7)

where

xk ¼

Z 1
0

e�st � hxkidt. (8)

and

bk ¼

Z 1
0

e�sthakihx0idt, (9)

are the Laplace images of /xkS and /akS/x0S, respectively.
Denoting l ¼ (s+nC)�1 we can rewrite Eq. (7) as

xk ¼ l� ½hxkð0Þi � xkþ1 þ nC � bk�. (10)

Using this recurrent relation, we obtain

x0ðsÞ ¼ l� x0ð0Þ
X1
k¼0

ð�1Þklkakð0Þ

* +
þ l� nC

X1
k¼0

ð�1Þklkbk

¼
x0ð0Þ

sþ nC þ i�ð0Þoð0Þ

� �
þ nC

Z 1
0

e�sthx0ðtÞidt

�
1

sþ nC þ i�ðtÞ �oðtÞ

� �
. (11)

Now we consider the case for which e(t) ¼ 1. If we assume that
x0(0) ¼ 1 and the stochastic process is the stationary process

1

sþ nC þ ioðtÞ

� �
¼

1

sþ nC þ ioð0Þ

� �
, (12)

then from Eq. (11) it follows:

x0ðsÞ ¼
gðsÞ

1� nC � gðsÞ
, (13)

where

gðsÞ ¼
1

sþ nC þ io

� �
�

Z 1
�1

pðoÞdo
sþ ioþ nC

. (14)

Eq. (13) describes the dynamical transformation of the Laplace
image of the FID signal (i.e., the NMR absorption line) for the
arbitrary distribution function p(o).

Now we consider the case for which e(t) ¼ 1 for 0ptot and
e(t) ¼ �1 for tpt. For the time interval (t,N), for which e(t) ¼ �1,
from Eq. (3), entering analogously as with the conclusion (13), we
obtain for the stationary stochastic process

x0ðz; tÞ ¼
hx0ðtÞ=ðzþ nC � ioÞi

1� nC � hðzÞ
, (15)

where

hðzÞ ¼

Z 1
�1

pðoÞdo
z� ioþ nC

. (16)

The Laplace transformation of Eq. (15) relatively of the variable t
gives

x0ðz; sÞ ¼
h~x0ðsÞ=ðzþ nC � ioÞi

1� nC � hðzÞ
, (17)

where

~x0ðsÞ ¼

Z 1
0

e�st � x0ðtÞdt. (18)

From Eq. (13), it may be conclude that ~x0ðsÞ:

~x0ðsÞ ¼
1=ðsþ nC þ ioÞ

1� nC � gðsÞ
. (19)

Inserting Eq. (19) into Eq. (17) gives

x0ðz; sÞ ¼
kðz; sÞ

½1� nC � hðzÞ�½1� nC � pðsÞ�
, (20)

where

kðz; sÞ ¼
1

ðz� ioþ nCÞðsþ ioþ nCÞ

� �

�

Z 1
�1

pðoÞdo
ðz� ioþ nCÞðsþ ioþ nCÞ

. (21)

Obtained Eq. (20) fully describes the dynamical transformation
of Laplace image of the echo signal for arbitrary distribution
function p(o).
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Fig. 1. Schematic presentation of the distribution function p(o). The arrows

designate the jumps of the frequency o(t) from the value o1 to the value o2 and

from the value o2 to the value o3. The value nC determines the density of these

jumps.
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3. Dynamical transformation of NMR line shape

In the present section, using Eq. (13) we consider the
dynamical transformation of NMR line shape for some distribu-
tion functions p(o).

(1) In the case, when the distribution function p(o) has a doublet
form:

pðoÞ ¼ 1
2dðoþDÞ þ 1

2dðo�DÞ, (22)

from Eq. (13) it follows the well-known result [1,7,9,10]

x0ðsÞ ¼
sþ nC

sðsþ nCÞ þD2
. (23)

The Laplace transformation of Eq. (23) gives [1,9,10]:

hxðtÞi ¼ e�nC t nC

R

� �
sinhðRtÞ þ coshðRtÞ

h i
, (24)

where R2
¼ n2

C � D2.
(2) Transformations of the NMR line shape for the case, when the

distribution function p (o) has the form

pðoÞ ¼
Xn

j¼1

pjdðo�oPjÞ, (25)

where
Pn

i¼1pi ¼ 1, and n ¼ 3 (p1 ¼ p2 ¼ p3 ¼ 1/3) are shown
in Fig. 2. It is easy to calculate the similar transformations of
NMR line shape for the case when n43.

(3) The obtained Eq. (13) gives an opportunity to study
the influence of intermolecular dipolar interaction on the

transformations of NMR line of mobile water molecules. Using
the distribution function p(o) in the form

pðoÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

Xn

j¼1

pj exp �
ðo�oPjÞ

2

2s2

 !
, (26)

where
Pn

j¼1pj ¼ 1 , we analysed the transformation of NMR
line shape of mobile water molecule jumps between nX2
non-equivalent position. The results of this consideration will
be published in Ref. [29].

(4) If the function p(o) has Lorentz form

pðoÞ ¼ s
p� ðo2 þ s2Þ

, (27)

from Eq. (13) it follows:

hxðtÞi ¼ expð�stÞ. (28)

Thus, for Lorentz distribution function p(o), the stochastic
jumps of the frequency o(t) do not influence the NMR line
shape. This unusual result was obtained at the first time in
Refs. [2,7,30]. It is of interest to note also that Lorentz
distribution (27) is the limit case of the Pareto–Lévy
distributions for which only the first moment has the finite
quantity [31].

(5) For the Gauss form of the function p(o)

pðoÞ ¼ 1

s
ffiffiffiffiffiffi
2p
p exp �

o2

2s2

� �
, (29)

ARTICLE IN PRESS

Fig. 2. The temperature transformations of NMR line shape in the case when p(o) is described by the function (25). n ¼ 3; p1 ¼ p2 ¼ p3 ¼ 1=3; nC ¼ 1.2�1013 exp(�25 kJ/

mol/kT) Hz. The bold continuous line represents the line shape at T ¼ 130 K; the bold broken line represents the line shape at T ¼ 155 K; the broken-point line represents

the line shape at T ¼ 180 K: (a) o1 ¼ 4 kHz; o2 ¼ 8 kHz; o3 ¼ 12 kHz; (b) o1 ¼ �4 kHz; o2 ¼ 8 kHz; o3 ¼ �12 kHz; (c) o1 ¼ 4 kHz; o2 ¼ �8 kHz; o3 ¼ 12 kHz;

(d) o1 ¼ 4 kHz; o2 ¼ 8 kHz; o3 ¼ �12 kHz.
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we have from Eq. (13)

x0ðsÞ

¼
ð
ffiffiffiffiffiffiffiffiffi
p=2

p
=sÞerfc½ðsþ nCÞ=s

ffiffiffi
2
p
�

exp½�ððsþ nCÞ
2=2s2Þ� �

ffiffiffiffiffiffiffiffiffi
p=2

p
ðnC=sÞerfc½ðsþ nCÞ=s

ffiffiffi
2
p
�
.

(30)

Kubo and Tomita obtained the following expression for the
transformations of the Gauss NMR line shape (29) [32]

Rex0ðsÞ ¼
expðs2t2

CÞ

2ps
�
X1
n¼0

ð�1Þn

n!
ðs� tCÞ

2n

�
stC þ n=stC

ðstC þ n=stCÞ
2
þ ðo=sÞ2

, (31)

where tC ¼ n�1
C .

Using Eqs. (30) and (31), we calculated the transformations of
NMR line shape. Both Eqs. (30) and (31) give the similar
numerical results for the same sets of parameters s and tC.

(6) In his classical book [1], Abragam suggested to describe the
FID in solid state NMR by the function

GðtÞ ¼ exp �
s2t2

2

� �
�

sinðbtÞ

bt
, (32)

The other function G(t) was proposed in Ref. [33]

GðtÞ ¼
J1ð2

ffiffiffiffiffiffiffi
M2

p
tÞffiffiffiffiffiffiffi

M2

p
t

, (33)

where J1 (x) is the Bessel function of the first kind and M2 the
second moment of NMR line shape.

The results of calculations of the transformation of NMR line
shape, whose FID’s is described by the function (32), are shown in
Fig. 3.

4. Dynamical transformations of spin-echo signals

In the present section, using Eq. (20), we consider the
dynamical transformations of spin-echo signal for some distribu-
tion functions p(o).

(1) If the distribution function p(o) has a doublet form Eq. (22),
from Eq. (20) we have

x0ðz; sÞ ¼
1

2

sþ 2nC � iD
ðsþ nC þ RÞðsþ nC � RÞ

�
zþ 2nC þ iD

ðzþ nC þ RÞðzþ nC � RÞ

þ
1

2

sþ 2nC þ iD
ðsþ nC þ RÞðsþ nC � RÞ

�
zþ 2nC � iD

ðzþ nC þ RÞðzþ nC � RÞ
, (34)

where R2
¼ n2

C � D2.
The Laplace transformation of Eq. (34) gives the well-known
result [9,10]

hxðt; tÞi ¼ e�nC ðtþtÞ

R2
� ½n2

C cosh Rðt þ tÞ þ nCR sinh Rðt þ tÞ

�D2 cosh Rðt � tÞ�, (35)

(2) The results of calculations of the dynamical transformation of
the Laplace image of echo signals for the cases when the
signal FID is described by the Eqs. (32) and (33) are shown in
Fig. 4.

(3) The dynamical transformations of the two-dimensional
NMR spectrum x0ðz ¼ io1; s ¼ io2Þ for the case when the
distribution function p(o) has the doublet form (22) are
shown in Fig. 5.

5. NMR and dynamic disorder in solid state

The concept of a distribution of the correlation times has been
widely used in interpreting NMR data, such as line shape, second
moment and relaxation times [34–38]. In the most works in
which the concept of the correlation times distribution has been
discussed, it was assumed that the randomness of correlation
times appears due to a static set of random barriers and an atom
(or molecule) moves without changing them. However, random-
ness of potential barriers must be dynamic rather than static,
since, due to the collective character of the diffusion process, the
fluctuations of the potential barriers would occur simultaneously
with each jump of a moving particle [39–41]. Now we consider

ARTICLE IN PRESS

Fig. 3. The temperature transformations of NMR line shape in the case when p(o) is described by the function (32). s ¼ 10�2 MHz; n0 ¼ 1.2�107 exp(�25 kJ/mol/RT)

MHz exp(�25 kJ/mol/RT) Hz. The bold continuous line represents the line shape at T ¼ 136 K; the bold broken line represents the line shape at T ¼ 144 K; the broken-point

line represents the line shape at T ¼ 152 K: (a) b ¼ 3s and (b) b ¼ 5s.
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the transformations of the second moment of NMR line shape for
the case, when the potential barrier for the mobility of magnetic
nuclei is the stochastic function of the time.

The temperature dependences of the second moment M2 of
NMR line and spin-lattice relaxation rates in laboratory T�1

1 and
rotating T�1

1r frames are determined by the dipolar correlation
function h(t) [1,42]. Here we will consider for simplicity only the
temperature dependence of the second moment M2, which is
determined by equation [1,42–44],

M2ðTÞ ¼
1

p

Z do

�do
J0ðoÞdo, (36)

where the spectral density J0(o) is determined by

J0ðoÞ ¼ Re

Z 1
�1

dðtÞ expðiotÞdt, (37)

and the dipolar correlation function d(t) (t40) is

dðtÞ ¼ K
X

i;j

hbijð0ÞbijðtÞi. (38)

In Eq. (38) the angular brackets denote again the averaged value of
bij(0)bij(t) for the random motions of spin-pair i�j;

K ¼
3

4
g4_2IðI þ 1Þ

1

N
(39)

and

bijðtÞ ¼ R�3
ij ðtÞ½1� 3 cos2 yijðtÞ�. (40)

Assuming that the nuclear i�j pair, in the result of the molecular
motion (diffusion or molecular reorientation) of i and j nuclei,
occupies the lattice sites Ok (k ¼ 1, 2, 3, y, n) and the correlation
frequency nC, describing the molecular motion is the random
function of time, it is easy to obtain [45]

dðtÞ ¼ hM2i þ DM2 � f ðtÞ, (41)

where

f ðtÞ ¼ exp �

Z t

0
nCðt

0Þdt0
	 
� �

. (42)

ARTICLE IN PRESS

Fig. 4. The temperature transformations of two-dimensional NMR spectra in the case when p(o) is described (a) by the function (33) and (b) by the function (32).

s ¼
ffiffiffiffiffiffiffi
M2

p
¼ 0:5, b ¼ 1. From top to bottom: tC ¼ 2, tC ¼ 1, tC ¼ 0.5.
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In Eq. (41)

hM2i ¼ K
X

i;j

1

n

Xn

k¼1

bijðOkÞ

" #2

� K
X

i;j

hbiji
2, (43)

is the second moment of motionally narrowed NMR line [1,44],

DM2 ¼ M2 � hM2i (44)

and

M2 ¼ K
X

i;j

b2
ij (45)

is the second moment of NMR line in rigid lattice [1,44].
Comparing Eqs. (42) and (2), we see that the function f(t) is the

solution of the Kubo–Anderson stochastic differential Eq. (1) with
x(0) ¼ 1 and i�ðt0Þoðt0Þ ¼ nCðt

0Þ.
Using the solution of the Kubo–Anderson equation Eq. (13) we

have from Eqs. (41) and (37)

J0ðoÞ ¼ 2hM2idð0Þ þ 2DM2 � Re½f ðioÞ�, (46)

where

f ðioÞ ¼ rðioÞ
1� n0 � rðioÞ , (47)

and

rðioÞ ¼
Z 1

0

qðnCÞdnC

ioþ nC þ n0
. (48)

In Eq. (48) the function q(nC) describes the distribution of all
possible values of the correlation frequency nC(t). The jump from
one value of the correlation frequency nC(t) to the other one is
determined by the frequency n0.

Insertion of Eq. (46) into Eq. (36) gives

M2ðTÞ ¼ hM2i þ DM2
1

p

Z do

�do
Re½f ðioÞ�do, (49)

At first, we note that in the case when both dynamic and
static randomness of the potential barriers are absent and
the molecular motions in solids are described by one correlation
frequency nC0 ¼ t�1

C0 (for this case n0 ¼ 0 and pðnCÞ ¼ dðnC � nC0Þ),

ARTICLE IN PRESS

Fig. 5. The temperature transformations of two-dimensional NMR spectra in the case when p(o) is described by the function (26). n ¼ 2, oP1 ¼ �oP2 ¼ 1. From top to

bottom: tC ¼ 2, tC ¼ 1, tC ¼ 0.5: (a) s ¼ 0.1 and (b) s ¼ 0.5.
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from Eq. (47) and Eq. (48) it follows that:

Re½f ðioÞ� ¼ tC0

1þ ðotC0Þ
2

. (50)

Insertion of Eq. (50) into Eq. (49) gives the well-known results
[1,42–44]

M2ðnCÞ ¼ hM2i þDM2
2

p
tan�1 do

nC

� �
. (51)

The concept of a static distribution of the correlation times in
solids assumes the static (but not dynamic) scattering of
the correlation frequencies nC ¼ t�1

C , which is described by
the distribution function q(nC). In this case n0 ¼ 0, and from
Eqs. (47) and (48) it follows that:

Re½f ðioÞ� ¼
Z 1

0
qðnCÞ

tC

1þ ðotCÞ
2

dnC (52)

and

M2 ¼

Z 1
0

M2ðnCÞ � qðnCÞdnC . (53)

The value M2(nC) in Eq. (53) is determined by Eq. (51).
Now we consider the case of dynamic distribution of the

potential barriers for which the distribution of the correlation
frequencies nC is described by the log-normal function

qðnCÞ ¼
kT

sE � n
ffiffiffiffiffiffi
2p
p exp �

ðkT lnðnC=n1Þ þ ĒÞ2

2s2
E

" #
. (54)

The log-normal distribution of nC corresponds to the case when
nC follows the Arrhenius activation law

nC ¼ n1 exp �
E

kT

� �
, (55)

in which activation energy E has a normal (Gauss) distribution

yðEÞ ¼
1

sE

ffiffiffiffiffiffi
2p
p exp �

ðE� ĒÞ2

2s2
E

" #
. (56)

For simplicity, we will assume that the frequency n0 also follows
the Arrhenius activation law

n0 ¼ n1 exp �
Eb

kT

� �
, (57)

where Eb is the activation energy, which determines the
temperature dependence of jump frequency n0 from one value

of the correlation frequency nC to the other. Using Eqs. (54), (57)
and (49), we calculated the temperature transformations of the
second moment M2 of NMR line. The results of these calculations
are shown in Fig. 6. From Fig. 6, it follows that in the case of static
distribution of the potential barriers the temperature dependence
of M2 is a symmetrical function of the temperature at which
M2ðTÞ ¼ DM2=2. In the case of dynamic distribution of the
potential barriers, the temperature dependence of M2(T) exhibits
a significant dependence on the type of the standard deviation sE

of the distribution function y(E) (Eq. (56)) and on the form of the
activation energy Eb at jump frequency n0 (Eq. (57)). It can also be
seen that in the case of the dynamic disorder of the activation
energy E, the temperature interval in which the reduction of
the second moment is observed is smaller than that in the case
of the static disorder of E. This effect reflects the motional average
of the correlation frequency nC induced by its temporal fluctua-
tions with the jump frequency n0. It should be also noted that the
temperature at which the reduction of the second moment is
observed shifts in the dynamic case to the side of the lower
temperatures.

We applied the model of the dynamical disorder of the
potential barriers to the interpretation of the temperature
transformations of the second moment of 1H NMR spectra of
the diffusing water molecules in the mineral natrolite. In this
compound, unusual temperature transformations of the 1H NMR
line shapes have been observed [36,46]. The mineral natrolite
ðNa2Al2Si3O10 � 2H2OÞ is a typical channel-type compound with
porous structure. According to the NMR data [46–48], at T4250 K,
the diffusion of the water molecules occurs along the vacancies
whose positions coincide with regular positions of water
molecules in the natrolite lattice. The anomalous temperature
transformations of the NMR line shapes in natrolite are connected
with the appearance of the wide temperature interval in which
the reduction of the second moment was observed (Fig. 7). This
behaviour is not consistent with the assumption that the diffusion
process of the water molecules can be described by one
correlation time. In Refs. [36,46], it was assumed that the
observed temperature behaviour of the NMR second moment is
connected with the static distribution of the correlation times for
the diffusing water molecules. However, this assumption does not
agree with the NMR [47,48] and neutron diffraction data [49]

ARTICLE IN PRESS

Fig. 6. Temperature dependences of the second moment of NMR line M2. The

graphs were obtained for the following parameters: M2 ¼ 18:5� 10�8T2,

M2 ¼ 2:67� 10�8T2, Ē ¼ 20:8 kJ=mol, sE ¼ 0:1Ē and n1 ¼ 1:2� 10�13 Hz. The bold

continuous line represents Eq. (51). The broken-point line represents Eq. (53) (the

case of static disorder) obtained with the normal distribution of E. Eq. (49) (the

case of dynamic disorder) is represented by the short broken line ðEb ¼ ĒÞ and by

the broken line ðEb ¼ 0:88ĒÞ.

Fig. 7. The temperature dependence of the 1H NMR second moment in natrolite

for the case that the external magnetic field ~B0 lies in [110] direction. The symbol

(’) represents the experimental data [36,46]; the continuous line represents

Eq. (49) (dynamic disorder) obtained with the following parameters: Ē ¼ Eb ¼

73 kJ=mol, sE ¼ 0:02Ē; the broken line represents Eq. (51) obtained with nC ¼

1:2� 10�13 expð�73 kJ=mol=RTÞ; the short broken line represents Eq. (53) (static

disorder) obtained with the normal distribution of E and Ē ¼ 73 kJ=mol,

sE ¼ 0:02Ē. For the all graphs, M2 ¼ 432:3 ðkHzÞ2, M2 ¼ 13 ðkHzÞ2.
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showing that all water molecules in the channels of natrolite are
chemically and structurally equivalent.

From the results obtained in this paper, it follows that the
unusual temperature transformation of the NMR second moment
in natrolite may be explained assuming that the potential barrier
for the diffusion of the water molecules fluctuates chaotically as a
function of time. The results of our calculations for this model are
shown in Fig. 7. The data presented in this figure show that the
model of the dynamical fluctuations of the potential barrier
describes well the experimentally observed unusual temperature
transformations of the second moment of NMR spectra in natrolite.

6. Conclusion

We obtained the analytical solution of stochastic differential
equation for the two-level quantum system, assuming that the
stochastic process described a fluctuation of the frequency o is
the Kubo–Anderson process. The obtained solution is right for
arbitrary distribution function p(o) of the fluctuating frequency
o. The obtained theoretical expressions (13) and (20) allowed for
the first time to consider of the dynamical transformation of NMR
line shape and spin-echo signal for different (arbitrary, in
principle) distribution function p(o). The obtained theoretical
expression (13) allowed us also for the first time to investigate the
temperature dependences of the second moment of NMR line
shape in solids with dynamic disorder. In our consideration, it was
assumed that the potential barrier E for the moving atom
(or molecule) is a stochastic function of time. The proposed
model of the dynamical disorder of the potential barrier was
applied to the interpretation of the temperature transformations
of the second moment of 1H NMR spectra of the diffusing water
molecules in the mineral natrolite.

In conclusion, it should be noted that the model of the two-
level system with a stochastic fluctuating frequency is only the
approximation to the reality, especially in the case of solids. This
model can be applied to the ensemble of mobile nuclei with spin
I ¼ 1/2 for which NMR line shape is inhomogeneous broadened.
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