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1. INTRODUCTION 

The model of a two-level system with a frequency
stochastically fluctuating over time has found a wide
application in various fields of solid-state physics
(nuclear magnetic resonance (NMR) spectroscopy [1–
14], nonlinear optical spectroscopy [15–19], problems
of decoherence and phase relaxation of states in quan-
tum computers [20–22], etc.). This model is described
by the Kubo–Anderson equation [2, 3] 

(1)

where 
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) is the random function of time. 
The formal time-averaged solution of Eq. (1) can be

written as 
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 denotes averaging over all possible out-
comes of a random process. 

The function 
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 describes the linear response of
the two-level system (in nuclear magnetic resonance,
this function is called the free precession decay [1]),
and in the case of stationary stochastic processes, the
Fourier image of function (2) describes the shape of the
absorption line of the two-level system [1, 17–19, 23]. 

The analytical solution of Eq. (1) is known when the
resonance frequency 

 

ω

 

 randomly assumes two values
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 (the dichotomous random process) [10–13, 15]. An
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averaging algorithm for expression (2) was proposed in
[1, 3, 24] for the case where the resonance frequency 
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randomly assumes 

 

n

 

 possible values 
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, …, 
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. In
the classical works by Kubo and Tomita [23] and
Klauder and Anderson [5], the following expression
was derived for 
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〉

 

 in a Gauss–Markov random pro-
cess: 
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Here, 

 

σ

 

 is the variance of the random process and 
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0

 

 =

 is the correlation time that describes random varia-
tions in the frequency 

 

ω

 

. 

The Fourier image of function (2) (the line shape) is
described by the expression 
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In the absence of random fluctuations of the reso-
nance frequency 
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 (the “rigid” two-level system, 
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) transforms into a Gaussian func-
tion [23]. In the other extreme case of very rapid fluctu-
ations in 
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 (
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 1), the function 
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) transforms into
a Lorentzian function [23]. This transformation of the
line shape correctly qualitatively describes the so-
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called effect of thermal line narrowing [1, 19]. How-
ever, the line shape 

 

f

 

(

 

ω

 

) of the rigid two-level system is
far from Gaussian in many solids, which is a significant
hindrance for practical use of relationship (3). 

In this study, we obtained a solution to Eq. (1) which
does not rest on any assumption regarding the explicit
form of the line shape 

 

f

 

(

 

ω

 

) of the rigid two-level sys-
tem. 

2. THE LINE SHAPE OF A TWO-LEVEL SYSTEM 

We assume that the distribution of all possible values
of the frequency 

 

ω

 

(

 

t

 

) in Eq. (1) is described by the func-
tion 

 

p

 

(

 

ω

 

) and that the jumps from one allowed frequency
(

 

ω

 

1

 

) to another allowed frequency (

 

ω

 

2

 

) are independent
of each other and homogeneously distributed over time
with the density 

 

ν

 

0

 

 (

 

ν

 

0

 

dt

 

 determines the average number
of jumps within the time interval 

 

dt

 

) (Fig. 1). 

For the stochastic process under consideration, the
solution to Eq. (1) can be easily obtained using the
method of differentiation formulas, which was
described in detail in the review by Loginov [25]: 
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Here, 
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After substituting Eq. (1) into expression (4), we derive
the equation 
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d
dt
----- xk〈 〉 –ν0 xk〈 〉 ν0 x0〈 〉 αk〈 〉 αk∂x0

∂t
-------- .+ +=

αk
iω t( )[ ]k

,=

xk αk
x0.=

d
dt
----- xk〈 〉 – xk 1+〈 〉 ν0 xk〈 〉– ν0 αk〈 〉 x0〈 〉 .+=

The Laplace transform of Eq. (7) leads to the expres-
sion 

(8)

where 

(9)

(10)

Then, we introduce the designation l = (z + ν0)–1 l and
rewrite Eq. (10) in the form 

(11)

By assuming that the stochastic process is a stationary
process and using Eq. (11), we obtain 

(12)

where 

(13)

In practice, it is sometimes convenient to use rela-
tionship (13) rewritten in the form 

(14)

where G(t) is the Fourier image of the function p(ω): 

(15)

The resulting expression (12) describes the line shape
of the two-level system for an arbitrary distribution
function p(ω) of the frequency ω. 

3. DISCUSSION 

Now, we consider the application of relationship
(12) to several types of distribution functions p(ω). 
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Fig. 1. Schematic representation of the distribution function
p(ω) of all possible frequencies ω. 
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(1) When ν0 = 0 and p(ω) = δ(ω – ∆), relationships
(12) and (13) lead to the well-known result [1]: 

(16)

(17)

(2) When p(ω) = (ω + ∆) + (ω – ∆), from rela-

tionships (12) and (13), we again obtain the well-
known result [10–13]: 

(18)

The Laplace transform of relationship (18) leads to
the expression [10–12] 

(19)

where R2 =  – ∆2. 

(3) In the case where the distribution function of
possible values ω(t) is a Lorentzian function, 

(20)

from relationships (12) and (13), it follows that [1, 2,
10, 24] 

(21)

Therefore, in the case of the Lorentzian distribution
function of frequencies ω(t), random fluctuations of the
frequency ω(t) do not affect the line shape of the two-
level system. This remarkable result was first noted in
[2, 10, 24]. It is interesting to note that the Lorentzian
function (20) is the limiting case of the Pareto–Levy
distributions, i.e., the distributions for which only the
first moment of the distribution a finite quantity [26]. 

(4) Let us consider the case where the distribution
function of all possible values ω(t) is described by a
Gaussian function: 
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After substituting this expression into relationships
(13) and (12), we obtain 

(23)

The results of the calculations performed using rela-
tionships (3) and (23) are presented in Fig. 2. It can be
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Fig. 2. Thermal transformations of the line shape (Gaussian
curve) according to (a) relationship (23) and (b) relationship
(3) for the parameters σ = 10–2 MHz; ν0 = 1.2 ×
107exp{−25 [kJ mol–1]/kT} MHz; and T = (1) 136, (2) 144,
and (3) 152 K. Curve 4 shows the Gaussian distribution
(22). 
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seen from the curves depicted in Fig. 2 that, for the
Gaussian function describing the distribution of all pos-
sible values ω(t), relationships (3) and (23) lead to the
same results. 

(5) In his classical monograph [1], Abragam pro-
posed to use a plateau-shaped function instead of a
Gaussian function for describing the free precession
decay in solid-state NMR; that is, 

(24)G t( ) σ2
t

2

2
----------– 

  bt( )sin
dt

-----------------.exp=

We carried out calculations of the thermal variations
in the line shape for a two-level system with the use of
function (24) and with allowance made for relation-
ships (14) and (12). The results of these calculations are
presented in Fig. 3. A comparison of the curves
depicted in Figs. 2 and 3 demonstrates that the thermal
variations in line shape depend substantially on the
form of the function describing the distribution of all
possible frequencies ω(t). 

In conclusion, we note that the theory presented in
this paper does not depend on the specific form of the
frequency distribution function p(ω) and makes it pos-
sible to consider a series of yet-unsolved problems, in
particular, problems in the physics of solid-state NMR.
We would like to point out some of these problems. It
is interesting to investigate transformations of the NMR
line shape of water molecules in crystal hydrates. At
present, these transformations are analyzed using rela-
tionship (18) (or relationship (19)) [11], i.e., without
regard for the intermolecular dipole–dipole interactions
of magnetic moments of protons from different water
molecules. In [12], this interaction was investigated
phenomenologically, with changing z in relationship

(18) by z + . This formal change disregards the ther-
mal averaging of intermolecular dipole–dipole interac-
tions of magnetic moments of protons, which can lead
to errors in experimental values of the activation energy
of thermal motion of water molecules. Moreover, it
would be of interest to investigate the problem of trans-
formations of the line shape in a two-level system for
other distribution functions p(ω) of the Pareto–Levy
type, which describe the anomalous diffusion and reori-
entation processes in solids [26]. 
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