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Molecular Rotations / NQR / Spin Echoes

The influence of the hindered reorientations of CCly groups on the decay of NQR spin
echo signals has been investigated. In contrast to the well known literature approaches
to the solution of this problem we do not use the perturbation theory of Bloembergen,
Purcell and Pound. (PACS codes: 76.60.-k; 76.60.Gv; 76.60.Lz)

1. Introduction

At present it is well established by Nuclear Magnetic Resonance (NMR) and
Nuclear Quadrupolar Resonance (NQR) methods, that there are hindered ro-
tations of molecules in crystals. The hindered rotations of molecules lead to
the distortions of NMR spin echo signals and the nature of these distortions
may be used to obtain information about the rotational mechanisms and the
motional parameters of the molecules in solids [1-4]. In the case of NQR the
nuclear quadrupolar and dipolar interactions lead to the formation and to the
decay of NQR echo signals [5—14]. Up to now, a number of papers concern-
ing analysis of the influence of molecular reorientations and oscillations on the
decay of NQR echo signals due to electric quadrupolar interactions of nuclei
have been published [15-36]. It has been shown theoretically and experimen-
tally, that in the low temperatures (w71, 33> 1, where w, is the NQR resonant
frequency, and 7. is the correlation time of the stochastic molecular motions)
the relation 7, <« T, (T, is the spin—spin and 7| is the spin-lattice relaxation
times) is fulfilled and 75 ~ .. In the higher temperatures region (wy7, < 1)
the relation 7, = 7, is fulfilled and 7, ~ t'. In these works it was assumed
that the NQR spin echo signal attenuates exponentially with the spin phase-
memory time 7, and this time was calculated using the perturbation theory of
Bloembergen, Purcell and Pound (BPP) [14].
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However, it has been shown in [37] that the decay of the NQR echo signals
caused by dipolar interactions in solids with hindered rotations is not expo-
nential and so in this case the assumption about spin phase-memory time 7T, is
incorrect.

The main purpose of this paper is a study of the influence of the hin-
dered reorientation of molecular CCl; groups on the decay of NQR echo
signal caused by the nuclear quadrupolar interactions without using the ap-
proximation of the perturbation theory of BPP. In our approach we use the
theory of relaxation of quadrupolar echo signals, which has been proposed
in [38].

2. Theory
2.1 Hamiltonian of quadrupolar nucleus

Hamiltonian of a quadrupolar nucleus of spin / can be written in the coordinate
system x, y, z fixed in space as [14]

n=2

Hy= é;<—1)'lQ,lvn. )
Here

Qo= @[31; — I+ D], (2a)
0/=0" =111, (b)
0,=0",= 371)11, 2¢)

p— 1(2‘;7‘2_1), (2d)
Vo= \/TEVZZ, (2e)
V=2V, —iVyy, 21)
Ve = %(vxx — Vi) £V . 2g)

All denotations in Eqgs. (1) and (2) are standard [14].

The hindered rotation of the molecule in crystal leads to the time de-
pendencies of the components V, of the electric field gradient (EFG) tensor.
Introducing the coordinate system (&, 8, ¢) rigidly attached to the investigated
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molecules we can write [18, 19]

2
Vo= T2 B9V, 3)

m=—2

where T? (a, B, y) are the general spherical functions [14] and V/ are the com-
ponents of EFG tensor in the coordinate system (&, 6, £).

We will consider further the molecular crystals in which there are the hin-
dered rotations of CCl; groups about their three fold symmetry axes. In CCl,
group the EFG tensor on the site of **Cl nucleus has the axially symmetry
and the major axis of EFG tensor coincides with C-Cl chemical bond [36].
Choosing the coordinate system (&, 6, ) so that {-axis is coincided with C-Cl
chemical bond and using Eq. (3) we obtain

Vozﬁq@coszﬁ—l), (4a)
Vi = i%q sin(28) exp(TFic) , (4b)
Vi =— %q sin” Bexp(Fi2a) , (40)

where ¢ is the major component of EFG tensor and angle  is the angle be-
tween the z-axis and ¢-axis.

Inserting Eqgs. (4) into Eq. (1) we obtain the following Hamiltonian for
quadrupole nucleus

Hy= %wg(3 cos’ B—1) [1; - %1(1 + 1)]
+ i%wg sinB)(I1_+1_1,) exp(—ia) — (I71, + 1. I;) exp(ia)]
- %a)g sin® B[ IZ exp(—i2a) + 17 exp(i2a)] , (5a)

where

3eQq

“e = 21— hh P

is the resonance NQR frequency [14, 36].

If the CCl; group rotates about z-axis the angle « between x and £ axes in
Hamiltonian (5a) becomes the random function of the time. Hence in the case
of hindered rotation of CCl; group the Hamiltonian (5a) consists of two terms

HQ(t)=H0Q+H]Q(t). (6)
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The first part Hy, of the Hamiltonian (6) is obtained by averaging H,(¢) over
the time

- 1
Hop = Hy(?) = lim - / Hy(t')dt/ (7)

[~>00

and the second part H,, () is the fluctuating part
Hio(t) = Hy(t) — Hy (D) . )]

From Eq. (5a) we easily find

Hyp = %wQ(3coszﬁ—1) [1;—%1(1+1)] , 9
and
3
Hj,= iZwQ sin(2ﬂ)[(lzl, +1_Iy)exp(—ia)— (I, 1, +1.1;) exp(ia)]

— ZwQ sin® B[IZ exp(—i2a) + I exp(i200)] . (10)

2.2 Relaxation of quadrupolar two-pulse echo signals

Let us consider a response of a quadrupolar spin system to a two-pulse se-
quence R, — 7 — R, —t, where R,and R, describe the actions of the first and
second rf pulses. We assume that during the action of rf pulse the fluctuating
part H,,(¢) of a Hamiltonian can be omitted. We choose also as our start-
ing point the following well known perturbation equation for the reduced spin
density matrix p* (¢) [14]

p*) =p (0)—/dt// 20), Hip(t)], Hig(t/ =¢/)]de’ . (D)

The approximations inherent in Eq. (11) are thoroughly discussed by Abragam
[14].

In Eq. (11)

p* (1) = exp(iHyon) p(1) exp(—iH,o1) 12)

and

H (1) = exp(iHoot) H 1o (1) exp(—iHog1) (13)
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are the density matrix and the random Hamiltonian in an interaction represen-
tation.

The general expression for the signal V(z, 1) following a R, —7 — R, —¢
pulse sequence is given by [14]

V(z, )~ Tr{p(zr,n1,}, (14)
where p(t, t) is the average spin density matrix over the random fluctuations of
the Hamiltonian H,,(¢) and 1, = Iy +il, [14].

Using Eq. (11) it is easily to obtain the averaged spin density matrix p(z, f).
Indeed, if after the first R, rf pulse ( = 0) the density matrix has the form [14]

p*(0) = p(0) = R, HooR;", (15)

then according to Eq. (11) the reduced density matrix at the time T becomes
p*(2) = p*(0) — f dt// [[o*(0), Hp(t))], Hyp(t! —¢")]de” . (16)
0 0

Substituting Eq. (16) into Eq. (12) yields
p(1) = exp(—iHooT) ™ (1) exp(iHogT) . (17)

If at the time 7 after the first rf pulse, the second pulse R, is applied, the spin
density matrix becomes

p(t*) = Ryp(DR," . (18)

After the second rf pulse the evolution of the reduced spin density matrix is
again described by Eq. (11) with the initial condition

P*(0) = p(t") = R, exp(—iHoT)p* (1) exp(iHooT) R}’
= R, exp(—iH,o7)p(0) exp(iHop D R;'

— Ry exp(—iHyo1) f dr/ / [[p€0), H, (1)), H o (1) = ¢7)]de”

x exp(iHopDR;" . (19)

Inserting Eq. (19) in Eq. (11) and retaining only the terms proportional to

[|H ]*Q||2 we obtain for the average spin density matrix p(z, #) the following
expression

p(t. 1) = Ag(r, ) — Ay (7, ) — Ax(T, 1), (20)
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where

Ao(t, 1) = exp[—iHoo(t — T)] R, exp(—i1H, 1) p(0) exp(iHOQr)R;'
x expliHyo(t — 7)]. 2D

A 1 (T, t) = exp(_iHOQt)Rz exp(—iHOQ‘[)

x /dt//[[p(o)’Hl*Q(t/)]’HI*Q(t/_’//)]d’//
4] 0

x exp(iHopT) R, " exp(iHyot) . (22)

A, (T, 1) = exp(—1Hypt)

] o0
/dt// [[RzeXp(_iHoQT)p(O)exp(iHOQr)R;‘,HI*Q(;/)],
X
T 0

H,@t — t//)]dt//
x exp(1Hypt) . 23)

The first term A, (7, £) in Eq. (20) does not consist the random variables and ex-
clusively this term in the average spin density matrix determines the conditions
at which the echo signal may be formed. Substituting only the term A,(z, )
into Eq. (14) yields

Tr{Ao(r, 01} = Y (al Ry |b) (bl p(0) [0} {c| R, "|d) (d] I.. |a)
a,b,c,d

x exp{il(E;— E)t —(E, — E)tl}, (24)

where E, and |n) (n = a, b, c, d) are the eigenvalues and eigenfunctions of the
Hamiltonian Hoy

Hypln) = E,|n) . (25)

Eg. (24) indicates, that an echo signal will be observed at the time ¢ =z, if ¢, is
E,—E.

=T = (26)
E,—E,

Let us consider now the terms A (7, f) and A.(z, ). Using Eq. (25), the matrix
element {(a| A,(z, 1) |d) can be written as

(al Ai(z, 0 |d) =Y explil(E, — E)t — (Ey— E)Tl}

b.c

x {a| R, |b) (b|K(D)|c)(c|R;"|d), @n
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where
(BIK@]c)= D" { (blo(O)e) /dt/ exp [i(E. — E)t] / dr’’ G e (t/, /)
ef 0 0
X eXp [i(Ec — Ef)t//]
— el p(O) | f) f dt’ exp [i(E,+ E; — E, — E)t]
0
X / dt” G (¢ 1) exp [WE. — E)t]
0
— el p(O) | f) f dr' exp [i(E, + B, — E.— E)']
x / dt” G e (' 1) exp [i(E. — Ep)t"']
0
+(f1p0) Ie) / &t/ exp [i(E, — E)i']
()]
x f dt” G (', 1) exp [W(E, — E})] (28)
0
and
Guhcd(t/a f//) = {a| Ho(t/) |b) (c| Hio(t/ — 1/} |d) (29)

are the correlation functions of the random Hamiltonian H,,(¢) [14].

If the random process leading to the fluctuations of H,,(7) is stationary the
correlation functions G ,,.,(t/, t//) depend only on |t// —¢/| and do not depend
ont/ [14].

Introducing the frequencies w,,

wab:Eu_Eb (30)

and defining the spectral density functions as [14]

oo

Japea(®) = / dt” G apea(t', ") exp (it , @31

0
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we obtain

(BIE@)|c) =D 3 (bl p(0) le) Jpe(eep) / dt’ exp (iw..t')

ef

- (el 10(0) |f) Jbeff(a)cf) / dt/ CXp [i(whe - wcf)t/]
0

- (6" P(O) |f) chbe(web) / dt/ exp [i(a)be _wcf)t/]
[}

+ (f1 p(0) 1) J e (@er) f dt’ exp (iwyt') ¢ (32)
()]

In Eq. (32) the terms for dt/ exp(iwt’) with w # 0 are unimportant, because
these terms oscillate with high frequencies and in the time scale (0, 7) give
zero [14, 38]. Retaining in Eq. (32) only the terms for which @ = 0 gives

(b|K@)|c) =7 [ (bl p(0) Ic) [— Toree(0) = T e (0)

+ Z [Jc_[fc(wcf) + thbf(wfb)]]

f

— 8pe Z {(flp(O) | f) [‘]cfcf(a)cf) + Jfbbf(a)/b)]] . (33)
f
Inserting Eq. (33) in Eq. (27), we have

(alA(r, Dld) =7 {Z<a|R2|b><b|p<0)|c>(c|Rz‘ |d)

b.c

x exp {il(E,— E)t— (E, — EJtl}
% [ = T ©) = Lo (@) + Y [ @)+ Tpeop)]|
f

—expli(E,— E)f] ) _ (al R, b} {c|p(0) |} (b| R, |d)
X [‘Ihcch (a)hc) + J('hhc (a)cb)] } . (34)

Eq. (34) contains the two types of the high-frequency oscillating terms:
expli(wg.t — wp. )] and exp(iw,?). For the time ¢ =, the first exponential
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according to Eq. (26) equals unity for all times 7. The second exponential
term depends only on f and may be neglected at the echo signal considera-
tion [14, 38]. Omitting these oscillating terms in Eq. (34) we may write

(al Az, 0 ld) = {Z (al Ry 1b) (b p(0) |c) {c| R, " |d) (35)

b,c

X [— Jopec(0) — J e (0) + zf: [J(yj"c(wcf) + Jﬂ;bf(wjb)]:l}-

The same consideration for the term A, (7, t) gives the following expression
for the matrix element {a| A,(z, t) |d):

(al Ax(z, D |d) = 1, {Z (al R 1b) (bl p(0) |c) {c| R, " |d) (36)

b.c

x [— Ja0da(0) = J tea (0) +2f: [ aga(wa) + J, faaf(waf)]]]~

Inserting Eqgs. (21), (35) and (36) into Eq. (14) we obtain the following
general expression for the two-pulse echo signal

V(T 1) =) AweaRarea(, 1) - 37)

a,b,c.d

The matrix elements A, in Eq. (37) are independent of the time fluctuations
of the interaction Hamiltonian H,,(¢) and have the form

Aasea = (a| Ry 1b) (b| R\ Hoo R, |c)(c| R;'|d) (d| L |a) (38)

The matrix elements R,.,(t, t.) which describe the relaxation of the two-pulse
echo signals are

Rupealt 1) =1— szZl- - teTz;li ~ exp ( - ‘CT2;(17 - teTz;l,) J (39)
where
Tt = =2Jec0) + Y _ [T (@s0) + Tege(e0)] (40)
I
and

T{a‘; = —2J s (0) + Z [Juﬁa () + Jd_[fd(wdf)] - (41)
P
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3. Influence of hindered rotations of CCl; group
on NQR echoes

Let us apply the obtained general expression (37) and consider the influence of
the hindered rotations of CCl; groups on NQR echo signal of ¥ClI nuclei. The
Hamiltonians H,, and H, () have in this case the forms (9) and (10).

To contrast with NMR, in NQR the tf pulses are selective pulses [39,40]
and for example for a nucleus with spin 7 = 3/2 the rf pulses connect only
the states |£3/2) and |£1/2). The states |[+1/2) and |—1/2) (states 14+3/2)
and |—3/2)) are not connected by rf pulses. This fundamental difference from
NMR and NQR allows to consider only two eigenstates of Hamiltonian Hog:
|4+3/2) and |+1/2) (or |-3/2) and |—1/2)) and write for two-pulse signal
V(z,t,) at t, = 1 the following expression

2
V(r.t, = 7) = V(0) exp (——T> , 42)
T,
where
1 3\ /3 1\ /1 3\ /3 1
V) ~{=| R, |2 =] o)\ = W= | RS = = | Ly | = 43
o~ (3l% )Gl 5}l = )Gl ) @
is the amplitude of the echo signal when 7 — 0 and
T{l = —2J3232.1212(0) + J3232323200) + T2 212102 )
+ J3/2,1/2,|/2,3/2(—w) + 11/2,3/2.3/2,1/2(—60) + J3/2.71/2,71/2.3/2(‘w)
+ 233 () . 44)
In Eq. (44)
1 2
w= Ea)Q(S cos’ B—1). (45)

The Hamiltonian H,(f) (10) has the following matrix elements
(m| Hp()Im) =0,
343
(3/21H o 0)11/2) = (1/2|H\o[3/2)* = —iT[wQ sin(2p) explia(1)]
(3/2|H (0] —1/2) = (—=1/2|H,x(®)13/2)*

= _9?% sin” B exp[—i2a(n]. (46)
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Using Eq. (46) we obtain from Eq. (44)

T, = %27—(0%_) sin2(2ﬂ)/ [cos «(0) cos a(t/) + sina(0) sin at/)]
0

x exp (—iwt’)ds!

+sin* B / [cos 2(0) cos 2a(¢/) + sin 2a(0) sin 2a(7) ]
0

x exp (—iwt')dt’ ¢ . (47)

The correlation functions in Eq. (47) («(0) = 0) are equal [41]

cos e (0) cos a(¢/) = sin a(0) sin a(¢/) = cos 2a(0) cos 2 (t/)

/
= sin 2a(0) sin 2a(t/) = % exp (— i |> , (48)

[

where 7. is the correlation time.
Inserting Eq. (48) into Eq. (47) we obtain

77 = 2oy (sint 26 +sin ) G g (49)
For CCl, group cos 8 = 1/3 [36] and from Eq. (49) we have
T, = L6wgre (50)
1+ jowpt?

Generally for the hindered rotating CCl; groups in molecular crystal [4, 5]
it is wp7. > 1 and hence, from Eq. (50) we have the well known results
(T, ~ 7. [36])

T,= —1,. (51)

The hindered rotations of CCl; groups give also the contribution to the spin—
lattice relaxation time T, [14, 36]

3

Ti=%. (52)

Using Eq. (52) it easily obtain the well known relation (7, <« T)) between T,
and T, for the reorienting CCl; group

1
T2 = ﬁTl ~ 10_2T1 . (53)
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In the case of high temperature when w1, < 1, from Eq. (50) we have also the
well known result (7> ~ ¢ ' [14,36])

T, = 16w,t.. (54)

In conclusion, it should be note that obtained in this paper results are well
known in NQR spectroscopy [14,21,36]. But in contrast to the well known
approaches to the solution of this problem [11, 15-19], we do not use the per-
turbation theory of BPP and in this respect our approach is more correct.
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