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Abstract. The influence of thermal molecular motions on spin echo decay in pure nuclear quadru-
pole resonance (NQR) is considered. Our calculations show that the Hahn echo decay is caused by
dipole-dipole interaction of the nuclear spins and is strongly affected by molecular mobility that can
lead to the shortening of the echo decay with increased temperature. Slow molecular motion yields
an exponential 7° time dependence, while fast motion yields an exponential decay. The outlined theory
allows us to explain an unusual shortening of the 3*Cl NQR echo decay on heating in thiourea-C,Cl,
inclusion compound.

1 Introduction

The line width of zero-field nuclear quadrupole resonance (NQR) in solids is
usually determined by the distribution of electric field gradients (EFG) and by
dipole-dipole interactions in a system. In pulse NQR, the inhomogeneous quadru-
polar and homogeneous dipolar interactions lead to the formation of the NQR
echo signals [1-11]. Up to now, a number of papers concerning the analysis of
two-pulse NQR echoes due to inhomogeneous electric quadrupolar interactions
of nuclei have been published [1-10]. In 1977, Pratt [11] studied the formation
of the NQR spin echo due to the homogeneous dipolar interactions. He showed
that the two-pulse 905- 7-905,-¢ sequence leads to the formation of the NQR echo
signal (dipolar NQR echo), which is similar to the solid-echo signal in nuclear
magnetic resonance (NMR) [12, 13].

In the NMR case, it was well established that echo signals in solids may be
significantty distorted in the slow-motion region [14-17). The nature of this dis-
tortion can be used to obtain the information about motional mechanism and mo-
tional parameters of molecular groups in solids. However, such effects in pure
NQR have hardly been studied. The objective of the present paper is to study
the influence of the thermal molecular motions on the NQR echo decay. Our
calculations show that due to dipole-dipole interaction of nuclear spins (i) slow
molecular motion yields exponential 7*> dependence of the echo decay, while fast
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motion yields usual exponential decay, and (ii) the thermal motions can lead to
the shortening of the echo decay with increased temperature. The outlined theory
allows us to explain an unusual shortening of the spin-spin relaxation time 7,
on heating in thiourea-C,Cl, inclusion compound.

2 Theory

Let us consider a nucleus with spin 7=3/2. In the laboratory frame, its Hamil-
tonian is (A=1) [11]

H, = %Q_{I; —%I(I+1)}—co,(1x siné + I, cos @) - cos(wr) + S,
_ % )
=7@% + K () + S, (1

Here @y is the NQR frequency [18]. The first term of the Hamiltonian describes
nuclear quadrupolar interaction; for simplicity, we assume that the asymmetry pa-
rameter of the EFG tensor is equal to zero. The second term describes the cou-
pling of the nuclear spins with the applied radio-frequency (RF) field. Angle &
determines the orientation of the RF coil relative to the z-axis, which coincides
with the orientation of the symmetry axis of the EFG tensor. The third term of
the Hamiltonian describes dipole-dipole interaction among nuclei.

Let us assume that random molecular motions of a quadrupolar nucleus yield
the time dependence of the quadrupolar and dipolar interaction Hamiltonians, and
write the Hamiltonian Eq. (1) in the form

5, = 22ty + H(0) + ), @

In Eq. (2), quadrupolar Hamiltonian (@,c#,/2) is the Hamiltonian which de-
scribes the quadrupolar interaction of the nucleus in the case when the molecu-
lar motion is absent and

I (1) = ST (1) + S (1), 3

where c7(?) is the time-dependent part of quadrupolar interaction Hamiltonian.
In the absence of the molecular motion () =0 and

A, = HA,. (4)
We assume that ||@,c#y/2|| > [[SH ()], ||| and will examine the evo-

lution of the spin system in an interaction representation in which any operator
A(?) has the form [18]
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A(t) = exp(igz)-@%t) - A(1)- exp(—i%%t).

Here o is the frequency of the applied RF field.
In the interaction representation, the density operator 5(¢) is described by [18]

.do(t ~ -
1220 - o7, - 25%), B0 )

With Eq. (A15) and by assuming that @, > ||SZ(t)||, we obtain

% = % ~ L1, =%“l@% —%wlsinﬂ-@%.;s—%wl@?%{m(t), )
where Aw = @, — ® and
S, = 4, ™)
(1) = 2[cos @ I, +sin 8- (I, — A)]- cos(wx)
+5sin@- 4- cos(2mt) —sin - B - sin(Qart). ®)
In Egs. (7) and (8)
| 1

A=I+ L1,

and
1
B= E(IZIY +1,1;).

The Hamiltonian Eq. (6) contains a time-independent part, as well as time-
dependent parts oscillating at @ and 2. By retaining in the Hamiltonian Eq. (6)
the time-independent part only (secular approximation [18]), one can write

- 1.
A = THQ 3% siné - 4. &)

The formal solution of Eq. (5) with Hamiltonian Eq. (9) is

P() = exp(~iHt) p(0) exp(icHZa). (10)

Let us consider an ensemble of quadrupolar nuclei having spin / = 3/2. The
thermal equilibrium density operator p(0) of the ensemble before applying the
RF field can be written as [18]



44 N. A. Sergeev et al.

p(0) = ﬂf’;@%g,

where B = 1/kT; T is the temperature of lattice.
With Eq. (A17) and by assuming that @, > Aw, from Eq. (10) we obtain

[)(t)=ﬂ-{cos(a)]’t)-w—2Qc% +%sin(a){t)-B}, an

where @] = éa)l sin@.

If the first RF pulse is a n/2-pulse (@[¢, = /2, where ¢, is the pulse length),
from Eq. (11) we have

ﬁ(ﬁ)=ﬁ-%-3-

After the RF pulse, the interaction Hamiltonian describing the free evolution
of the density operator is

S, =52, + ), (12)

where

S (1) = (1) + S (0). (13)

By retaining again in the Hamiltonian Eq. (13) only the terms which com-
mute with quadrupolar interaction Hamiltonian H,, (secular approximation [18]),
one can replace Eq. (13) by Hamiltonian

H (1) = (1) = M, (1) + S, (0). (14)

In Eq. (14) Ay (1) and c#(?) are the secular parts of the time-dependent quadru-
polar Hamiltonian ([c#g,, c#g] =0) and the dipolar Hamiltonian &% ([S#,,
SHol=0) [7, 11, 18, 19], respectively.

In the interaction representation we have the following expression for the
density operator at time 7 [18, 20]

ort)~ - exp(—iAa)@%r/Z){B - ijLe(t')Bdt’

f

— [de" [ L)L ()dt'B + } exp(iAwc,7/2), @15)

L} L}
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where L (t") =[c#(t),...] is the Liouville superoperator in the interaction rep-
resentation.

If the second RF pulse of the length ¢, is applied after the time interval z,
the density operator becomes

plt,7.0) = Ry () p(z.4) Ry (t,), (16)
where R,(#,) describes the action of the second RF pulse, and this operator has,

according to Eq. (9), the form (@, > Aw)

R,(t)= exp(i%a)l sin@ - Atz).

By inserting Eq. (15) into Eq. (16) we obtain

plty,t,t) ~ B+ exp(——iAa)@,’V?ar/Z)liﬁ —i[L,(t"Bdr

h

~[de" [ L (t")L,(¢")Bdt + ...:lexp(iAa)@ff%rQ). (17)

h h

Here we have used the notation D= R;'(1,)DR,(t,) with any operator D.
‘ If the second RF pulse is a m-pulse, with Eqs. (A17) and (A18) we have

Hy = exp(—%a)1 siné - Atz) “H, -exp(—;—wl sin@ - AtzJ =~y (18)

B= exp(—%a)1 sin@- AtZ] ‘B exp(%wl sind - Atzj =-B, (19)

L= exp[—%a)l sin@-AtZ] L, - exp(%w, siné - Atz) =-L,. (20)

From Egs. (18) and (19) it follows that the second m-pulse reverses the signs
of the quadrupolar interaction Hamiltonian and the operator B.
With Egs. (18)-(20) we can write Eq. (17) as

Bty T,t)~ B+ exp(iAa)@%r/Z){B +if L (¢")Bdr'
4

7 t”
+ j dt"_[Le(t”)Le(t’)Bdt’ + } exp(—iAwcSHy/2).

4 4
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After the second RF pulse, the free evolution of the density operator is again
described by Hamiltonian Eq. (12), and at time ¢ (measured from the beginning
of the first pulse) the density operator has the form

T t
plt,ty,7,t) ~ B - exp(—iAwy (t — 21)/2)[3+ i[L()Bd' —i | L(t)Bdr

1 T+,

— _T[dt”tj"Le(t”)Le(t’)Bdt’+ j' dt"jLe(t")Le(t')Bdt'

£ 4 T+ 1
1 1 2 1

- fa Le(t”)Le(t’)Bdt’+..}exp(iAa)@%(t—21')/2).

T+, T+t

The observed transient response of the ensemble of spins after two pulses is
proportional to time-dependent terms of I, and I, resolved along the axis of the
coil [18]

V(t,ty,7,t) ~ T pt,t,,7,8) - (I sin@ + I, cos 9)],

where the upper bar denotes the average of the density operator on the random
interaction Hamiltonian H(?).

With Eq. (A15) we obtain the following expression for the signal amplitude
after two pulses:

‘ T t
V(t,t,,7,t) ~ ﬁ-Tr{B-exp(—iAwo?f()(t —-27)/ 2){B+ijLe(t’)Bdt’ —i _|' L (¢+)BdY

4 T+,

- jdt"’fLe(t")Le(t')Bdt'+ j’ dt”jLe(t”)Le(t’)Bdt’

1 f T+t f

- j de” ] Le(t")Le(t')Bdt'+..}exp(iAa)@9?6(t— 21)/2)}. ‘21

T+t T+,

From Eq. (21) it follows that the echo amplitude after two pulses at the time
t = 27 does not depend on the Aw. This fact indicates that at ¢= 27 inhomoge-
neous quadrupolar interactions lead to the formation of the NQR echo signal.
The decay of this echo signal is determined, according to Eq. (21), by

T t”
V(t=21,t,7,6)~ B-| 1= [dt" [ he".t)dt
0 0

=27 T =21

+ [ de"[h@,tyde - dt”tfh(t",t’)dt’+..} (22)
T 0 T T

Here we assumed that #,,¢, < 7,# and denoted
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Tr{BL,(t")L,(¢)B}

ht, ) = Te(B?)

In order to calculate the correlation function h(t”,+') we consider the simple
model of the molecular motion in solids. We assume that the time dependence
of the interaction Hamiltonian <*#, is caused by rotation or diffusion jumps of
molecular groups (containing both resonant and nonresonant nuclei) between
discrete lattice sites (2, (k= 1,2,...,n) [20]. We assume that the random pro-
cess describing the molecular motions in solids is a stationary Markovian pro-
cess [20-22]. For the stationary Markovian process the correlation function
h(t”,t") depends only on [t” — ¢'|, and for A(f) > 0 (¢ > 0) it can be written as
[20-22]

= (le) “Tr{BY Y P(2)P(£2,0| 2, .0 (Q),[£(2,),B]l}.  (23)
i Im

h(t) =
Here P(£2) is the probability that the random Hamiltonian S#(f) is equal to
SH'(£2) at time ¢ = 0, while P(£2,0|€2 .0 is the conditional probability that if
at time ¢ = 0 the random Hamiltonian <¥#'(f) was equal to c#,'(£2), then at time
¢t this random Hamiltonian will be equal to <#'(£2).

For the random Markovian process the conditional probability P(£2,0/42,,1)
satisfies the Smoluchowski equation [21, 22]

%P(.Q,,O | 2,,0) =Y P(£2,0| 2,,0)W,,, 24
k=1

with the conditions
P(£2,0|£2,,0) =5,

Y P(£2,0102,,0)=1,

m=1
2 Wi =0. (25)
m=1

In Eq. (25) W,, (k+ m) are the rate constants, which describe the probability
that the random variable €2(f) changes from (2 to €2, by one jump.
Assuming that (/ + m)

where ¢ is the correlation time of the motional process, it is easy to obtain from
Eq. (24) that
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P(2,0102 .,6)= -1—[1 - exp(—t/7,)] + exp(—t/t,)0,,. (26)
n
By inserting Eq. (26) into Eq. (23) and assuming that P(£2) = 1/n we have

h(t) =N, + AN, exp(—'rﬂj. @7

Here

+ = THBIH[F, B1l)
g Tr(B?)

T = Z[li@%f(ok)].

B

i k=1
In Eq. (27) AN, = N, — N,, where

N, = Bl [, B}
2 Tr(B?) '

(28)

Here <# is the interaction Hamiltonian Eq. (3) of the quadrupolar nucleus for
the case of no molecular motions in solid. In this case according to Eq. (4)
K, = %, and from Eq. (28) it follows that

N, = i, = THBISGIG, BIL
Tr(B?)
It is easy to see that N, is the dipolar interaction contribution to the second
moment of NQR spectra in a rigid lattice [18]. _
For the case of isotropic molecular reorientation N, =0 and the correlation
function can be written as

h( 1) = My, exp(-'—;—']- 29)

c

With the correlation function Eq. (29) and calculating the integrals in Eq. (22)
we obtain the following expressions for the NQR echo signal (¢ = 27, i.e., equal
to the doubled delay between RF pulses):

27
~f- =0 30
exp( Tzdj G0

V(t=2r,7,)=f" {1 - M,1? [—3 2 exp(—gj + 4exp(—
T T

c c

SRR
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where

2] 3 ¢ 1 27 2
i i o3 I

< C

From Eq. (30) it follows that the Hahn echo decay after the m-7-m/2 pulse
sequence in pure NQR is determined by the nuclear dipole-dipole interactions.
The thermal fluctuations of quadrupolar interaction caused by molecular motion
do not influence the echo decay.

It is interesting to note that the obtained expression Eq. (30) coincides with
the expression describing the relaxation of the solid-echo signal in NMR [15].
We note that this expression is also well known in EPR spectroscopy [23].

If z/7,> 1 (fast-motion region), one can obtain from Egs. (30) and (31) [15,
23] that

V(t=2r,7,)= f-exp(—2M,, - 17,). (32)

If 7 <7z, (slow-motion region), Eqs. (30) and (31) yield the spin-echo enve-
lope decay [15, 23]

Vie=2r,1)= " exp(——zg‘/[—Zd . 13]. (33)
T

c

According to the above theory, the time-cubed exponent of Eq. (33) contrib-
‘utes to the spin-spin relaxation at the initial part of the echo decay, when delays
between pulses r are short in comparison to 7, and then gradually turns to the
ordinary exponent (Eq. (32)) which determines the tail part of the decay. Usu-
ally, the spin-spin relaxation time is determined as a time of the echo amplitude
decay by a factor of e. Thus, if the 7, > 7 region is present in the experiment,
the “effective” value of the spin-spin relaxation time T, obtained from the echo
decay is shorter than that resulting from the usual exponential behavior.

We note that the time-cubed dependence of the echo signals decays is known
in NMR and NQR [18, 24, 25]. In NMR, such dependence is usually observed
in the case of molecular diffusion through a gradient of the external magnetic
field [18]. In NQR and quadrupolar-perturbed NMR measurements, the time-cubed
dependence of the spin-echo decay has been observed in structurally incommen-
surate systems and was attributed to the slow motion of the modulation wave
[24, 25]. As shown above, such time-cubed decay of the echo signals may also
be observed in the case of slow thermal motions (molecular rotation or diffu-
sion) in solids when 7< 7.

3 Results and Discussion

We apply the obtained theoretical results for the analysis of temperature depen-
dences of the NQR spin-echo decays in thiourea-C,Cl, inclusion compound,
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[2.95(NH,),CS]'C,Cl4. In this compound, the guest molecules are entrapped within
the unidirectional, nonintersecting tunnels of a hydrogen-bonded thiourea network
and pack within van der Waals contact of each other [26, 27]. **Cl NQR mea-
surements of powder thiourea-C,Cl in the temperature range from 20 to 90 K
have been made on a Tecmag pulse spectrometer at 40.4-40.7 MHz. NQR spec-
tra of powder samples of thiourea-C,Cl, cover a range of several hundred kilo-
hertz, which is too broad to be excited by the RF n/2 pulse. Therefore, the spec-
tra were obtained with computer-controlled point-by-point frequency sweep and
acquisition of the Hahn echo amplitude at each specified frequency. These mea-
surements have been done at a reduced RF power with rather long, “soft” pulses
(n/2 pulse was 26 ps) in order to excite only a small portion of NQR line. The
echo amplitude obtained represents the intensity of the actual NQR line at the
specified frequency. The maxima of the Fourier transform of echoes have shown
the same line shape. **C1 NQR spectra of the compound under study [28, 29]
comprise two lines in the temperature range from 73 to 90 K and three lines at
20 to 73 K (Fig. 1). The spin-lattice relaxation time 7, has been measured with
the n-7-m/2 inversion recovery sequence. Spin-spin relaxation has been measured
with the n/2-7-m spin-echo sequence. The spin-spin relaxation time T, was taken
as the time of the decay of the echo amplitude by a factor of e. Experimental
T, values at temperatures of 70-90 K are given in Fig. 2. Temperature depen-

~"”\j\’\-—~ 50K
/_/\\//\\_GSK
M
VAN

88 K

T T

——
40.3 40.5

—— —r— T
40.7 40.9 4141

Frequency (MHz)

Fig. 1. *Cl NQR spectra of thiourea-C,Cl, inclusion compound at different temperatures.
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Fig. 2. Temperature dependence of the **Cl NQR spin-lattice relaxation time T, in thiourea-C,Cl, in-
clusion compound measured at the high-frequency peak. The solid line is the theoretical curve de-
scribed by Eq. (34).

dence of the experimental T, values for different resonance peaks is shown in
Fig. 3.

The experimental temperature dependence of the spin-lattice relaxation time
T, in the temperature range from 60 to 90 K (Fig. 2) is typical for the spin-
lattice relaxation due to the reorientation of C-Cl, groups [28], and the experi-
mental data are well described by the equation derived in ref. 9

1.6
14
1.2
1.0
0.8+
0.6

T, (ms)

0.4
0.2

0.0

T T T ¥ T T T M T v T v T v T

20 30 40 50 60 70 80 90
T(K)

Fig. 3. Temperature dependence of the 3°C1 NQR spin-spin relaxation time 7, in thiourea-C,Cl; in-
clusion compound. The solid line is the theoretical curve described by Eq. (37). Squares, triangles
and circles refer to the low-, medium-, and high-frequency resonances, respectively.
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T Y (ms™) =1.15-107°T"7 4+ (4/3)- 71, 34
where the correlation time of the molecular reorientation 7, is
7, = (107 5) - exp(18.3 kJ - mol™!/RT). (35)

(The values of AE=18.3 kJ-mol~! and 7, = 107!* s were obtained from the fit
of the T\(1/T) curve in the temperature range of 70-90 K). The calculation of
7, from Eq. (35) yields the values of 7, from 0.3 ms at 7=90 K to 0.38 s at
T =70 K. Measurements of the Hahn echo show that 7, is almost constant at
20-55 K. Higher temperature yields a significant shortening of the echo decay
with heating (Fig. 3). Usually, it is assumed that spin-spin relaxation in NQR is
governed mostly by flip-flop processes of the dipolar interaction of nuclear spins.
Therefore, one can suggest that any thermally induced fluctuations of these inter-
actions should yield an elongation of 7,; an opposite behavior, from the first sight,
is hardly explainable. However, such explanation may be found from the theory
outlined above. When measuring 7, in our experiments, the delay 7 between /2
and 7 pulses was varied from 10 ps to 0.3-1 ms (depending on temperature). From
the calculated values of 7, shown above, it follows that in the temperature range
under study we mostly deal with 7 < 7, or, in other words, with the slow motion.

Let us analyze the experimental data on the spin-spin relaxation time T, by
Eq. (31). The expression Eq. (31) is true at different values of 7. However, since
we deal with 7 < 7, we can analyze the experimental data on the spin-spin re-
laxation time T, by Eq. (33) with

= (M, .72,
3r

c

Ty (36)
Here (M,,) is the dipolar interaction contribution to the second moment of NQR
spectra of a polycrystalline sample.

For 7, — oo (the case of a rigid lattice), Eq. (33) yields V(t = 27,7,) — | and
thus T,; — . However, the decay of the echo signal is observed also in the
case of the rigid lattice. As shown in refs. 12 and 13, the decay of the NMR
echo signal in the rigid lattice is due to the high-order terms of the dipole-di-
pole interaction. These terms are proportional to the fourth moment M, of the
NQR spectrum (caused by the dipole-dipole interaction) and were not included
in our consideration. We will denote the spin-spin relaxation rate caused by these
additional terms as T,;' and assume that it does not depend on temperature [18].
Since T,, was taken as the time of the decay of the echo amplitude by a factor
of e and is in the order of the average doubled delay between pulses used in
the experiment (7,4~ 27), from Eq. (36), we have

From this equation we obtain
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1/3
r=[—3r° ) .
2My,

By inserting this equation into Eq. (36), we have

1/3
T2:11=M2dz.2= M, )
3 127,

c

By taking into account the relaxation rate T,;' we can write the following ex-
pression for the effective rate of the echo decay 7!

1/3
=T 4| M| (37)
127,

where T,;' is the rate of the echo decay due to the additional temperature-inde-
pendent mechanism of the spin-spin relaxation. Here M, is the dipolar contri-
bution to the second moment of *Cl NQR spectra in the rigid lattice.

The solid line in Fig. 3 shows the theoretical curve for the decay of the echo
amplitude, as calculated from Eq. (37) with 7, from Eq. (35). The best fit be-
tween theory and experiment we obtain at 7,, = 1.4 ms and (M,,)"? = 8 kHz.
Thus, thermal motions of nuclei lead to the shortening of the NQR echo decay
with increasing temperature. As seen from Fig. 3, satisfactory agreement between
theoretical and experimental curves was obtained. We note that, unfortunately,
the value of M, caused by the **CI-'H dipole-dipole interaction cannot be deter-
mined from the experiment, since the line width of the 3°Cl NQR spectra is
mostly due to the distribution of EFGs and does not reflect the dipolar coupling
of nuclei. The estimation of the **Cl-'H dipole-dipole contribution to the second
moment of *°Cl nuclei for the rigid lattice leads to the value M, of about 1 kHz>.

4 Conclusion

We have shown that, due to the dipole-dipole interaction of nuclear spins, the
slow thermal motions of nuclei can lead to the shortening of the NQR echo decay
with increasing temperature. The obtained result explains the observed tempera-
ture dependences of the NQR spin echoes of *Cl nuclei in thiourea-hexachloro-
ethane inclusion compound.

Appendix

We wish to calculate !/i(t)), where

|A()) = exp(ic#t) - A- exp(—icH#t) = exp(iLt)- | 4)
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and the Liouville superoperator L is related with interaction Hamiltonian &% by

L =[@9%,...].

The formal solution of this problem may be obtained with the formalism of
Mori [30-32]. In the Liouville space the ket-vector |4(¢)) may be expressed as
the superposition [30-32]

@) = 36,0 Iny (A1)
n=0

of the ket-vectors |[n) which form an orthogonal set

snlm) _ - (A2)
(nln)
with the inner product defined as
{nlm) = Tr(n*m). (A3)
These vectors satisfy the recurrence relation [30-32]
0) = 4, (Ada)
Iny=Ln—1)—v2, |n—2), (A4b)
where
polntlnth (A5)
(nin)
and
vi=vi =0 (A6)
The functions G,(f) in Eq. (Al) satisfy the system of equations [30-32]
—i% =G,
—i 46, =G,_, +vG (A7)

dt n—1 nnt+l*
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Al Evaluation of Iy\(t) =exp(iLyt) -1,

In this case the interaction Hamiltonian c#’is the quadrupolar interaction Hamil-
tonian

17 1 0
=—|12-=II+1)|=—3%. A8
H 2[2 3 ( +)] > e (AB)

With Eq. (A4) and the interaction Hamiltonian (A8), we obtain for I = 3/2

[0x) =1y, 0y) =1,
1,)=iw- B, ;) =—iw- D,
2 3 ) 3
o=t | A=Sl ), R =0 C-Ch |, (A9)
Iny)=0,n23, Iny)=0,n>3,
where

A=%IX +1,1,1,, (A102)
B= %(IYIZ +1,1,), (A10b)
C= %IY +1,1,1,, (A10c)
D=%(IXIZ +1,1,). (A10d)

It is easy to show that
[Hy,4]=2iB,  [B,Hy]=2id, [A4,B]=2iH,, (Alla)
[Hy,D1=2iC, [C,Hy4]=2iD, [D,C]=2iH,. (Allb)

With Eq. (A13) and ket-vectors (A9) we have (a = X,Y)

vie =%a)2, (Al2a)
2 22 5

Vi =50 (A12b)

v,=0,n>2 (Al2¢c)
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For the interaction Hamiltonian (A8) and I = 3/2 it follows that (¢=X,Y)

Tr[1, exp(iLyt)1, ]

@0 =—57

2 3
= — + —cos(wt). Al3
b (o0t) (A13)

With Eq. (A13) and Eqgs. (A7), (Al12) we obtain

4 (a)
6oy =— 29O _ Lo, (Al4a)
Vao dr @
(@)
G (1) = iz[id—G‘d# - G(‘)“’(t)} = iz[cos(wt) —1] (A14b)
a,l w

and from Egs. (Al), (A9)-(Al4) we have

I x(O) =exp(Ly?) -1y = (Iy — 4) + 4 - cos(wt) — B, - sin(wrt), (Al5a)

fy () = exp(iLyt) - Iy = (Iy — C)) + C, - cos(wt) + D, - sin(wt). (A15b)

A2 Evaluation of )E'(t) =exp(iLt) - X
In this case the interaction Hamiltonian has the form
1 .
SH = —Ewl sin@ - A. (Al6)

With Egs. (A1)+(A7) and interaction Hamiltonian (A16), we obtain for I = 3/2
the following expressions

exp(—%a)lsinB-A-t)-HQ-exp[-;—a)]sinB-A-t)
=H 'COS(G)I’Z)‘F-E-B - sin(ay't) (A17)
Q B @ L),
exp[——;—a),sinB-A-t)-B-exp(%a)lsine-A-tJ

= B-cos(at) — %HQ - sin(at), (A18)
where

o = —53—(01 -siné.
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