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The effects of nonzero radio-frequency pulse widths on the echo signals in solids with
molecular motions have been investigated. It has been shown that in the slow-motion region a
time position and an amplitude of the echo signal depend not only on the width of the pulse, but
also on the shape of potential wells and the correlation time, describing the molecular motion. A
comparison of the developed theory with experimental results obtained for polycrystalline
NH4Cl demonstrates a good agreement between them. @ 2002 Elsevier Science (USA)
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1. INTRODUCTION

At the present time the “solid-echo” technique 90, — t — 90— Acq(s) [1,2] is a
powerful, NMR method for studying molecular structure and dynamics in solid
state. A general review of an application of the deuterium solid-echo technique has
been recently published [3,4]. There are also a great number of papers describing 'H
“solid-echo’ technique and its application in a study of molecular dynamics in solids
and polymers [4-28]. In almost all of the papers radio-frequency (RF) pulses were
assumed to be described by delta-functions (that supposes that w# 2 = /2 at the
pulse length 7, ; —» 0 and the amplitude of RF field w; — 00), so the dipolar
interaction Hamiltonian could be omitted during the action of RF pulses. This
approximation is not good enough for solids where the experimental RF pulse
amplitudes are comparable with dipolar interactions of nuclei. The effects of the
width of the hard RF pulses on the solid echoes in solids with rigid lattice have been
discussed in a few papers [24-26]. It has been shown that the dipolar interactions of
the nuclei during the hard RF pulses produce a shift of the echo signal maximum
from the time = 2t and the maximum of the echo signal is observed at ¢ =
2T+ 1 — /2 [24-26].

In the present paper, we consider the effects of the dipolar spin interaction during
the RF pulses on the solid-echo signal for the case, where there are the molecular

motions in solids. The preliminary results of our considerations have been already
published {27, 28].
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2. THEORY

Let us consider an ensemble of nuclear spins in a high static magnetic field
By (Bo||OZ). The equilibrium density operator p at ¢ = 0 can be written in the high-
temperature approximation as [29-31]

p(0) = BL. (D

Here f = hawo/kT)[Tr(E)]"' and E is the unit operator, wy = yBy 1s the Larmor
frequency (y is the magnetogyric ratio of the nuclei) and T is the temperature of a
lattice.

If at time ¢ = 0, the first RF pulse is applied along the OY-axis in the rotating
frame, the evolution of the density operator is described by the Liouville equation
[29-31]:

d

where the Hamiltonian H(¢) has the form

H(t) = —wily + Ho(2). 3)

Here w; = 7B, is the amplitude of the RF field and Hy(r) is an interaction
Hamiltonian of the ensemble of nuclear spins in the rotating coordinate frame [29—
31]. A rotation of the spin frame about the OY-axis with angular velocity w
“removes” the term (—w;ly) from Eq. (3) and equation of motion for the density
operator in this new rotating frame has the form

i%= [y, p1]- (4)

Here
p1(#) = exp(iontly)p(t) explionly), ()

and
H(¢) = exp(—iwtlyyHo(t) explion tly). (6)

The formal solution of Eq. (4) may be written as [29-31]

pr() = p1(0) — i /0 H(W), (O] df

- / Lt / (). (). py O i+ - ™
0 0
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Here #; is the width of the first RF pulse. If we assume that it is 90°-pulse
(w1ty = m/2), then from Egs. (7) and (5) we have

plt) = ﬁ{lx - i/ l [(Ha(?), Ix] dt’
0
—/ldt”/ [Ha(1"), [Ha(2), Ix]] dt’+-~-}. (8)
0 0
Here
(1) =exp (ig1y>H1(t) exp(—igly)
=exp (igly) exp(—iwtly)Hy(t) expliow tly) exp(—i%h). (9)

After the first RF pulse, the free evolution of the density operator is described by the
interaction Hamiltonian Hy(#) in the rotating coordinate frame and at time 7 (the time
7 is measured from the beginning of the first pulse) the density operator has the form

P@JOZPUO—i/[ﬂﬁ%P@Hﬁ/
—/WJ"%MM%MﬂMWW~n (10)
Inserting Eq. (8) into Eq. (10) we have
mmﬁ%%xiAUM&MW—AcﬂA[%OM%MAﬂW
— i / [Ho(t), Ix] df' — / dt’ /0 I [Ho(¢"), [Ha(?), Ix]) df

—/W/vw%m&mw#m} (11)

If at time 7 the second 90°-RF pulse (w £, = 7/2, tp is the width of the second RF
pulse) is applied along the OX-axis in the rotating frame, the density operator becomes

T+
p(t2, 7, t1) = pylt, t) — i / [(H(), p(z, 1)) df
T

T+t I
- / dr’ / [Ha(?"), [Ha(), po (e[ + -+ - (12)
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Here
pZ(Tatl) :B{]X - ZA ] [HS(tl)alX] dt/
- [Car [ e e - / [H(¢), Ty dr
- / ar' /0 ), (), 1T
- / ar / L") (), ]+ - } (13)
where
Hy(t) = exp(iglx>Ho(t) exp(—igl){), (14)
Hy(t) = exp(z’ng>exp(-iw1t1X)Hg(t) exp(iw,tly) exp(—i%[x), (15)
and
Hs(1) = exp (ing)Hz(t) exp(—iglx). (16)

Inserting Eq. (13) into Eq. (12) we obtain
b, n)zﬁ{zx—i | wsrnaar = [Fae [ s,
iy / (H(), Ll dil — / ar / [, Hs(@), I
f t 0
_ / " / ("), (), I )
T+t 4
_ / dt’ /0 [Hy(¢"), [Hs(¢), Ix]) df
T+ T
_ / a" / (Ha(e"), TH(Z), I]) df

T+ [
_ / " / [H4(t”),[H4<r'>,1X]]dt’+--}. (17)
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After the sccond RF pulse the free evolution of the density operator is described by the
interaction Hamiltonian Hy(f) and at time ¢ (the time ¢ is measured from the beginning
of the first pulse) the density operator has the form

¢

Pttt 1) = pllas o) — i / (Ho(@), pless =, 1)] dE

T+hH

t t//

= [ ar [t . e o (s)
T4+t T+
Inserting Eq. (17) into Eq. (18), we obtain

f 4 v
plt.a) = by =i [ s Il [ e [ e ps
0 0 0

_ IA [H}(t’)’IX] dt/ _/t1 dt"/o ! [H}(t”)a [HS(Z/)’IX]] dt/

/ a /0 ("), IH3(), Iy ) df

T+t f
a / da / [Ha(t"), [Hs(!), Ix]) df
T 0

T+t T
/ " / (HA), [H5(0), LT Y

T+t t’
- / " / (Hee"), THo(), I

t It
/ " / (Fo("), [HS(), Iy 1)
T+h JO

_ / i / A, (), I} e
T+

I

—/ " / [Ho(t”),[Ho(t’),lx]]dt'+---}. (19)
T+t T+

The observed transient response of the ensemble of spins on the two-pulse signal, is
proportional to the expected value of the X-component of spin operator [29-31]

Trip(t, o, 7, 1)y}

Vit,t,7,1) oC 5 s
t0,1,1) ")

(20)

where the upper bar denotes the average of the density operator on the random
motions of the nuclei.
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Substituting Eq. (19) into Eq. (20) we obtain

V(t,t2,7,11) oc ﬂ%{Tr(l)z() - l;/Ot1 Tr{Iy[Hs(t'), Iy]} df

_ / L / T I [ (), THSO) I T} df
0 0

— i/ Trilx[Hy(t), Ix]} df’

14

N / dt///o RIATAG) [Hs(e), Ix]1} dr’

_ / a’ / T L (), TE @, I} df

T+t t
_ / a’ /0 T Iy T, (), I ]}

T+ T
_ / a’ / Tr L T, [, Il df

T+t ¢
_ / dr’ / Tr{Ix[Ha(t"), [Ha(¢'), Ix1]} df

_ / at’ / T T, TS I}
T+t 0

A/ dt”/ TriIx[Ho(t"), [H3(1), Ix ]} df’
T+

4]

—/ dt" / Tr{Ix[Ho(t”),[Ho(t’),lx]]}dt’+-~-}- 2D
T+ T+

Hereafter, we will consider only secular terms of the interactions Hamiltonians:
Ho(0), H\(¢), Hy(t), H3(t) and Hy(r), Hs(f) [29-31]. This approach is equivalent to the
first approximation of the perturbation theory and it is fulfilled if the RF pulses are
the hard RF pulses (w; > ||Hyl|) [29-31].

The secular part of the Hamiltonian Hy(f) has the form [29]
Ho(t) = H(0) + His(), (22a)

where

HAD) =Y buOQLizliz — Ly ly — i), (22b)

i>k
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His(0) = Y caizSaz. (22¢)
In Egs. (22b) and (22c),
h
bilt) = R (1 = 3cos” 8y, 23)
cit) = %f yr7sR; (1 — 3 cos? 9), (24)

where y, is the permeability of vacuum, J; is the angle between the vector Ry (the
subscripts i and k& denote the resonant nuclei) and external magnetic field By, 3, is
the angle between the vector R;, (the subscript o denotes nonresonant nuclei) and
external magnetic fleld By. Hy(f) is explicitly time-dependent through the time
dependence of the functions by(f) and ¢, (¥).

As it results from Eqgs. (60), (9), (16) and (22) the secular parts of the Hamiltonians
H(1), H2(¢) and Hs(z) are as follows:

Hi(t) = Hx(1)
1
=- Z bi®) @l vy = lizhz = Iixler) = =3 Hy, (25)
i>k
1
Hs(1) = — Z bi)2lizliz — livley — Iixli) = —5 Hz. (26)
i>k

Similarly, from Egs. (14), (15) and (22) one can extract the secular parts of the
Hamiltonian H3(f) and Ha(¢):

Hy() = Z b2y lyy — lizlhz — Lixlix) + Z Cia(OiySaz, 27)
i>k ip
1
Hy(1) = Z biO2ixlex — lizlie — livley) = —5 Hx(1). (28)
i>k

Inserting Eqs. (25) and (26) into Eq. (21) we obtain

V) = 52) {T(lfa / % / T Ly TP (D) I
X

+ E/tl dl‘”\/0 Tr{lx[Hy(t”)’ [Hz(t’),lx]]} dt
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_ / a4’ / Tr{ LT ), [y (0, TeTT} Y

+

%[+t2 dt”/o l Tr{],\/[HZ(t”), [HZ(tl),[X]]} dr

/ dt' / Tr{Ix[Hz ("), [Hy (£), L]} df
T+

4

¢ t//
/ ar’ / Trilx[Hz ("), [Hz (1), Ix])} df’
T+t T+

/dt”/ Trilx[His(t"), [His(t'), Ix 11} df

/ dt” / Trilx [Hs(e"), [(Hys(¢), Ix]1} df
T+t

h

t t”
- / df"/ Tri{lx[Hs(t"), [Hys(t'), Ix 1]} df’ + - - }
T+8H T+

Evaluating the traces in Eq. (29) we have

1 I3 [l 1 T f
Vie,t,t,)=p-[1-=[ da W', ydd —= | dt’ h(1", )y dr
4 /o 0 2/, 0
T I 1 ! t
- / ar’ / h(', Ydl += / ar’ / (", {ydl
i 1] 2 T+ 0
t T t ¢
+ / dr" / h(", () df — / dr" / h(", ) df
T+ t T+ T+
T tl/
_ / dl”/ g(t”, t/) dr
4 H
t T t t
_ / dt”/ g(t”, tl) dt/ _ / dt/// g(t”, tl) dt// + .
T+f 3] JT+b T+

w1y = W Z ai(t")ay(t),

ik

Here

g(t', 0y =, Z din(1")din (V')

are the correlation functions of the dipolar local field [29-31].

(29)

/

:I . (30)

(31

(32)
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In Egs. (31) and (32):

_3 @ 2 422 1 N . p=3¢4 _ 20 oy
m —4(4n) VRO + I)N, ai(t') = R (@)1 — 3 cos? 04(1)], (33)

_1ﬂ021222 1 N p=3(\1 _ 2 /
Wy =3 () TS + D, d(t) = RAON = 3005 00N, (34)

First, we have considered the case of “‘rigid” lattice, with no molecular motions in
the crystal. For this case, we obtain from Egs. (31) and (32) as follows:

h0,0) =W Y~ a}, = My, (35a)
i k

g(0,0) =W Y d2 = M. (35b)

In Egs.(35a) and (35b), M,; and Mg are the homo- and heteronuclear
contributions to the second moment of the NMR line, respectively.

Inserting Egs. (35a) and (35b) into Eq. (30) and calculating integrals we obtain the
well-known result [32, 33]:

Vit,tz,7, 1) = B[l — %Mzu(t - 21—t + %1‘1)2 - %les(l‘ —t — l2)2 + -] (36)

In the case of the fast motion region, when correlation functions &(”, ), g(", ') do
not depend on time, one obtains

h0,0) = Wi " a3, = My, (37)

ik
_2 -
90,0y = Ws > d;, = Moy, (38)
i,

In Egs. (37) and (38), My, and Mo are the homo- and heteronuclear contributions
to the second moment of motionally narrowed NMR line, respectively [29, 34].

Inserting Egs. (37) and (38) into Eq. (30) and calculating integrals we again obtain
the well-known result:

Vit,,7,00) = B[l =Myt — 2t — 1, +11)?

- %les(f —n =)+ (39)

From Egs. (36) and (39) it follows that only homonuclear dipolar interactions
generate the solid-echo signal. Therefore, we should further consider only homo-
nuclear spin systems. It is worth noting that in the case of the stationary stochastical
process the correlation functions 4(¢”,#) and g(¢",#) depend only on z = |¢/ — /| > 0.



10 BILSKI, SERGEEV, AND WASICKI

In this case we can write Eq. (30) as

b e
V(t,tz,r,tl):ﬂ[l—z/o ( —z)h(z)dz—i/o 2h(z) dz

4]

. /t e de - % / ;] (t — Dh(z) dz

- /0 [ — 1) - h(z) de

1 T+t tl t—t
— —/ [+t — 1) —z]h(z) dz + ~/ h(z)dz
2 T+t —1) 2 T+t
t

T R / T - Dhe) e

2 -t t

=7 t—1

+ (t—1) h(z) dz + / [(t — 1) — z]h(z) dz

T+hHh—1) -1

- / ) - @t ] . (40)
0

2.1. Molecular Motions between Equivalent Potential Wells

In order to calculate the correlation function 4(z) we consider the simple model of
the molecular motion of resonant nuclei between the equivalent potential wells
determined in crystal lattice by discrete lattice sites Q; (I = 1,2,...,n) [34]. We
assume that the process of the random molecular motions in solids is the stationary
Markov process. For this case the correlation function A(z) is given by [27, 34]

— Z
h(z) = Moy + AM>y; exp <_r_)’ 41

.
where

AMyy = Moy — Moy (42)
and 7. is the correlation time, characterizing molecular motion.

Using the correlation function (41) and calculating the integrals in Eq. (40) we
obtain

V(t,t2,7,11) ~ﬁ{1 - %Mzn [t - (ZT o %ﬂz

~ AMoy 2Rt 1, T, 1, T) + - '}, (43)
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where

7 11 3 t 1 t !
R(t,lz,T,tl,‘Ec) = —Z—FT—“ﬁ—T—Z—ZeXp(—T—l) — exp<——2>
c c ¢ ¢

1ex N —i—lex T4 1ex -

2 P T 2 P Te 2 p T

1 ( ‘E—l—t2> < t—T> < tvr—t2>
+ zexp| — +expl| — +exp|l ——

2 Te T, T,

1 1 b —
+ sexp . + - exp _rrhoh . (44)
2 Te 2 Te

In the case of the polycrystalline sample we must average Eq. (43) over all possible
orientations of the crystallites. If we denote the averaged values of My and AM>y as
{My> and (AMyy >, then for small 7 and ¢ we can write

V(t,t,7.0) =ﬁ{1 - %<M2">[’ - (2T The %)r

- <AM211 >TER(ta B, 1,1, TL') + - }

~ %exp{—%fﬁlzlﬂ[’ - (2T th- %)r

 (AMan YRR, 1, zl,rc)}. (45)

The temperature dependence of the amplitude and the time position of the solid echo
are shown in Fig. 1a and b. From Fig. 1a it follows that the temperature dependence
of solid-echo amplitude slightly depends on the RF pulses width. From Fig. 1b it
follows that time position of the solid-echo maximum depends on the RF pulses
width, as well as on the correlation time 7. of the molecular motion. The dramatic
changes in the solid-echo behavior are observed in the slow-motion region ({My; )
12 ~ 1), where the amplitude of the solid-echo signal is reduced and the maximum of
the echo signal is shifted to the end of the second pulse.

2.2. Molecular Motions between the Nonequivalent Potential Sites

In the case of molecular motion between the nonequivalent potential wells, the
correlation function A(z) may be written as [35-38]

h) =Ko+ > Kiexp <—i>. (46)
20 Tei
Here K; (j =0,1,2,...,n) are the structural parameters, dependent on the shape of

the potential well and 7. are the correlation times, characterizing n» modes of
reorientation [35-38].
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V(t,)*T, arb. units

T 20 T
60 100 140 50 100 150

(@ T, K ) T, K

FIG. 1. (a) The temperature dependence of thg V(t.) x T calculated from Eq. (45) using the following
parameters: T = 20 us; Myy = 8 x 107% rad ps™2, Moy = 107 rad pus~2; 7. = 107% exp(16.6 kI mol ™' /RT)

$;--~ 0 =t =0us;—, t; =t =5 ps. (b) The temperature dependence of the time position ¢, of the
maximum solid echo calculated from Eq. (45) using the following parameters: My; = 8 x 1073 rad us 2,
Moy =103 radpus™% 1, = 107 % exp(16.6 kY mol™' /RT)s; 7=20pus; ---, ti=6,=0ps; —,
=1t =35 us.

Using the correlation function (46), we obtain from Eq. (40)

Vit tr,7.11) ~ﬂ{1 _ %Ko [t — <2r T %)]2

= > KRl 6,7, 0, ) + } (47)
i#0
where
t 3t t 1
Ri(t,tQ,T,tl,‘Cci) = - +"—___l__2_—'exp —— | —¢&Xp __2
T At T 4 ci Tei

t [ t—1—t
€Xp (—T + 2> + cXp (— T> -+ cXp <———~——‘T 2)
Tei Tei Tei
1 t)—t
+ < exp (—i> + —exp (——T th 1)] (48)
Tei 2 Tei

The temperature dependences of the amplitude and the time position of the solid
echo signal for the different potentials considered in [35] are shown in Figs. 2(a, b)-
5(a, b). The structural parameters K; (i =0, 1,2,...,n) and the correlation times 7
for different shape of the potential well, are defined as follows [35]:
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V(t,)*T, arb. units

100 200 300 100 200 300
(@) T, K (b) T,K

FIG.2. (a) Main plot: the temperature dependence of the ¥ (z,) x T calculated from Eq. (47) for 2E-
shape of the potential well, using the following parameters: My; = 8 x 103 rad us™2; 19 = 10 ¥4 s;
H=29kmol™"; y==36us; t=20us; —, A=145kImol™; ---, A=0kJmol™'. Inset:
schematic representation of the 2E-potential well. (b) The temperature dependence of the time position 7,
of the maximum solid echo calculated from Eq. (47) for 2E-shape of the potential well, using the following
parameters: Moy = 8 x 1073 rad pus™; 1o = 10 Y5, H =29 kI mol™"; #; =, = 3.6 s, v = 20 ps;
A=145kImol™"; - - -, A=0kJ mol™".

s

N -~
\\‘ ’//
401 ‘l II
_ 1 1
@ 1.0 N = ‘l ,’
> \ Y n
. \ !
e \ ] Vo
o \\ /II 3. 35 Lo
- i ~ V!
L_ 0.5 \V/ o \ ,(
=2 V!
> ¥
T 30 T
100 200 300 100 200 300
(a) T, K (b) T, K

FIG. 3. (a) Main plot: the temperature dependence of the F(z,) x T calculated from Eq. (47) for 2U-
shape of the potential well, using the following parameters: My; = 8 x 1073 rad us™2; tp = 1074 s,
H=29kImol'"; t{ =t = 3.6 us, t=20pus; —, A=145kImol™!; --- A=0kJmol'. Inset:
schematic representation of the 2U-potential well. (b) The temperature dependence of the time position ¢,
of the maximum solid echo calculated from Eq. (47) for 2U-shape of the potential well, using the following
parameters: Mz =8 x 103 rad ps™2; 19 = 107, H=29 kI mol™!; 1j = 1 = 3.6 us, 7 = 20 ps; ——
A=45kImol™!;--- A=0kJImol™".

s
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V(t,)*T, arb. units

T T T T
100 200 300 400 100 200

300 400
@ T. K ®) T, K

FIG. 4. (a) Main plot: the temperature dependence of the ¥(z,) x T calculated from Eq. (47) for 3E-
shape of the potential well, using the following parameters: My, = 8 x 1073 rad us~2; 79 = 10" s,
H=29kImol™"; ty=6,=36us, 1=20pus; ——, A=145kImol™"; ---, A=0kJ mol~'. Inset:
schematic representation of the 3£-potential well. (b) The temperature dependence of the time position ¢,
of the maximum solid echo calculated from Eq. (47) for 3E-shape of the potential well, using the following
parameters: AMy; =8 x 107 rad pus™2; 79 = 107 s, H =29 kI mol™": 1, = 1, = 3.6 pis, = = 20 ps;
A=145kImol™;--- A=0kJmol™".

b

0
= _
5 1.0 \\\ V ,,, \ |’
o i / Vool
8 Vo w354 Vo
v L/ E b
* -
~» 054 “\ ! o \ ,|
> v/ [
\\‘// [ O]
30- Vi
\l
(¥4
100 200 300 100 200 300
(a) T,.K (b T, K

FIG. 5. (a) Main plot: the temperature dependence of the V(z,) x T calculated from Eq. (47) for 3U-
shape of the potential well, using the following parameters: My = 8 x 1073 rad ps™2; 79 = 10714 s,
H=29kImol™; =n=36pus, 1=20pus; —, A=145kImol"'; ---, A=0kJImol'. Inset:
schematic representation of the 3U potential well. (b) The temperature dependence of the time position ¢,
of the maximum solid echo calculated from Eq. (47) for 3U-shape of the potential well, using the following

parameters: AMy; = 8 x 1072 rad/ps ™2 19 = 1074 s, H = 29 ki mol ™', 1y = 1 = 3.6 ps, 1 = 20 ps; ——,
A=145kImol™"; - - - A=0kJ mol™".
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2E-potential well

_1 _3
Ko = ;Moy, Ky = Moy,

a To €X H X A
T = —— —, = — |
P 1 O P\ RT 4= P\ pT

2U-potential well:

3 3
K0=M211{1— 4 }, K ?

(1 + a)?

_a . H ~ex H
T g P\RT ) 4T P RT)

3E-potential well:

Ko = Moy, Ky =Ky =My,

a H a x H . A
- — . Y I = ex — .
Tl TR RT ) TR T T2 P\Ry ) AT PRy

3U-potential well:

27 a 9 27a
Ky = Moy |1 — =2 - . K = My—0
0 211[ g (a—|—2)2 8(a+2)} 1 2][8(a+2)2
9
— Moj——
K 8+ 2y

_a . H _1 . H Cex A
Tc1~a+2T0 Xp ®T ) Tc2~3fo Xp ®T ) a = ¢xp RT )

The parameters H and A characterizing the 2E, 2U, 3E and 3U potential wells are
defined on insets of Figs. 2a—5a.

From Fig. 2 one can see that, as in the case of NMR second moment [35], the
temperature dependence of the solid-echo amplitude for 2£ well is almost
independent of A. On the contrary, for 2U and 3U potential wells, it strongly
depends on A. The interesting dependence of the solid-echo amplitude on
temperature is observed for 3E-potential well. For this case the two well-resolved
minima are observed. The temperature at which the low-temperature minimum is
observed depends on the energy H, while the temperature at which the high-
temperature minimum takes place is determined by the energy H + A.



16 BILSKI, SERGEEV, AND WASICKI

80
70 - "
T
60 L Sum
50
]
0D
v 40 4
o
fan)
=
o 304
| B,=16.3 [Gs]
i -B,=5.4 [Gs]
2 —B=33 [Gg]
® B-163(Gs)
104 A B=54 [Gs]
] ® B:=33 [Gs]
] T M T 1 M T
150 200 250 300
(a) T,K
1.0
0.8
0.6
]
> 044
------ B,=16.3 [Gs]
0.2 o - B =5.4 [G8]
——B,=33 [Gs]
® B=16.3[Gs|
A B=54 [Gs]
0.0 1 W B =33 [Gs]
T v L) T L) T
150 200 250 300
) T,K
1.0+
0.8
0.6
£
>
1=20.4 ps
=29.4 us
- 1=39.4 ps
O 1=204us
A =204s
O +=39.4us
) M T M T T )
150 200 250 300
© T.K

FIG. 6. (a) The temperature dependence of the time position z, of the maximum solid-echo amplitude
for polycrystalline NH4Cl at different values of RF field, © = 29.4 us. (b) The temperature dependence of
the maximum solid-echo amplitude ¥ (f) for polycrystalline NH,C! at different values of RF field,
T =29.4 ps. (c) The temperature dependence of the maximum solid-echo amplitude ¥(z,) for polycrystal-
line NH4Cl at different values of pulse spacing, B; = 16.3 G s.
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3. EXPERIMENTAL RESULTS AND DISCUSSION

The theoretical results obtained have been applied to the analysis of temperature
dependences of the solid-echo signals observed in polycrystalline ammonium
chloride (NH4Cl). Tt is now well established that in NH4Cl there are the
reorientations of the ammonium ions about three- and two-fold symmetry axes [39].

'"H NMR experiments were performed on the pulse spectrometer operating at
60 MHz, in the temperature range from 133 to 273 K.

The experimental results of the maximum echo time position (z,) at different pulse
spacing and at different values of RF field obtained for polycrystalline NH,4Cl as a
function of temperature are shown in Fig. 6a. One can see that for any pulse spacing
the maximum of two-pulse signal does not depend on the temperature, for
T > 160 K. The maximum of the echo signal is observed at t, ~ 27+ # — ¢ /2. At
T <160 K the time position of the maximum of the echo signal is shifted to the end
of the second pulse and the echo signal disappears. The solid and broken lines in
Fig. 6a are the theoretical curves for the time positions of the echo maximum, as
calculated from Eq.(45) using the results of the relaxation studies of these
compounds [39]. For NH4Cl we have used the following parameters:
T = (2.16 x 10~ 5) exp(19.85 kJ mol™' /RT); Moy = 4.74 x 108 T2, (AMay> =
46.15 x 107 T2, The agreement between theory and experiment is quite reasonable,
especially since no parameters have been adjusted.

The experimental results of the maximum echo amplitude at different values of RF
field and different pulse spacing as a function of temperature, are shown in Fig. 6b and
c. In all the cases, the plotted points were normalized so that the maximum value of
the echo amplitude was set equal to 1.0. The solid lines in Fig. 6b and ¢ are the
theoretical curves obtained from Eq.(45) using the same parameters as for the
theoretical curves in Fig. 6a. From these figures one can see that the developed theory
describes rather well the observed temperature dependences of the echo amplitude.

4. CONCLUSIONS

From our consideration it follows that time position and amplitude of the solid-
echo maximum depend on the correlation time 7. of molecular motion, and on the
width of RF pulses. The dramatical changes in the solid-echo behavior are observed
in the slow-motion region ({M,;>t> ~ 1), where the amplitude of the solid-echo
signal is reduced and the maximum of the echo signal is shifted to the end of the
second pulse. We have shown that in the slow-motion region the time position and
amplitude of the solid echo are sensitive to the details and thermal parameters of
molecular dynamic process. It has also been shown that the study of the temperature
dependence of the time position and amplitude of the solid-echo maximum can yield
valuable information about the shape of the potential wells in solids.
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