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The effects of the widths of hard RF pulses (a width of RF pulses ¢, # 0 and an amplitude of
RF pulse w, >> Mzm) on the solid echoes in solids with molecular motions have been discussed
in [1]. It has been shown that in the slow-motion region (M, z‘c2 = 1) the amplitude of the echo
signal is reduced and the maximum of the echo signal is shifted to the end of the second pulse.
In the regions of the fast molecular motion (7, - 0) and the rigid lattice (7, ~ ) the maximum of
the echo signal is observed at 1, =27+ ¢, - £,/2[1, 2].

In this paper we consider the effects of the RF pulse widths on the solid echo signal assuming
that there are the fast (@, z. << 1) molecular motions in solids and the RF pulses are not so hard
(w, > M, 1/2). The difference between the present consideration and our early one [1] is
the introduction of the nonsecular terms of the dipolar interaction Hamiltonian in the treatment
of the dynamics of a spin system during the RF pulses.

The observed transient response of the ensemble of spins or the two-pulse signal, is given by
[1-3]

Trip(t,t,,7,1)1}
Tr(Iy)

V(tatzy T)t]): (1)

where the upper bar denotes the average of the density operator on the random motions of nuclei;
t, and ¢, are the widths of the first and the second RF pulses; 7is the time interval between the RF
pulses; 7 is the time where the NMR signal is observed and this time is measured from
the beginning of the first RF pulse.

Using the density matrix formalism [3] we obtain the following expression for the two-pulse
signal (90°, - - 90°, - 1)

Vit,t,,1,0) = pll1 - F(t,t,, 0,8)) - @(t,t,, 7,1, 0) - T'(t,8,, 7,8, @) + ...}

(2)
= pexp[-F(t, 4, 7,t)) - @(t, 4, 1,4, w) - I'(t,t,, 7, ¢, )]

Here 8= hwy/kT, wy is the nuclear Larmor frequency; 7T is the temperature of sample and
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In Egs. (3)-(5)
h(t", 1"y = WX/: a,(t"ya, (1" 6)
is the correlation function of the dipolar local fields [3].
In Eq. (6) [3]
3. 4.0 1
W==y*®I(l+1)—,
rid ( ) 5 (7
a,(t")= R (t")[1 - 3cos*6,(t")]. (8)

In order to calculate the integrals in Egs. (3)-(5), we assume that the random process
describing the molecular motions in solids is stationary Markov process and the correlation

function A(¢”, t') has the form [1]

"_ g1 = A _|t//_t/|
h([t"-t'])= M, + AMyexp| -+—>=L]| ,

7.

where 7, is the correlation time for the random thermal motion of nuclei and

M, = WE{ > ai,-(ﬂk)} = WY (a,?

1
Ng=1

is the second moment of motionally narrowed NMR line [3];
InEq. (11)

is the second moment of NMR line for the rigid lattice [3].

®

(10

amn

(12)

Using the correlation function (9) and calculating the integrals in Eq. (3) we obtain

the following expression for the function F(1, f,, 7, #,):

2
1 —+ t
F(tst2> T’tl):zMZ[I_ (22‘+[2— El]] +

FAM, T R(t by, 1,8, T) + ...

)

(13)
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where

(14)

t- 71 - 71- 4 1 7 1 T+
+expf ~—— | +exp| ————=| + —exp| - —1} + —exp| - ———
T, T, 2 T, 2 T,

The expressions (13) and (14) were obtained earlier [1] describe the solid echo signal in

the case of the hard RF pulses (w, >> M, 1/2).

For the case of the fast molecular motions (M, 12 7, << 1) from Egs. (13), (14) we have

— t 3t
F(t,t,,1,t)= —I-M2 [t— (2r+t2— 5‘) + AMzz'c[h —21—1— t,] . (15)

2

So in the case of the hard RF pulses the solid echo signal is described by equation

’ 3¢
- AM, z‘c[t— Sl t,] } (1)
) T

From Eq. (16) it follows that the maximum of the echo signal amplitude is observed at the time
y

e

— t
V(t, b, 7,8) = ,Bexp{—-;-M2 [t— (2r+ t, - 31)

1,=2T+t,- — - —=7_. 7

Inserting Eq. (17) into Eq. (16) we obtain the following expression for the solid echo amplitude

(Mzmrc << 1, 0 >> Mzm):
5t
V(t,, b, 7,t,) = Pexp —AMzrrc[ - 4—'] (18)

T

Let us consider the case of the RF pulses for which w, > M, 2 and w, 7, << 1. For this case
we obtain from Eqgs. (2)-(5)
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V(t,ty, ,t)= Pexp _§j_§M2[t_[2T+t2—El]] —AMzrc[t—E‘—Z’] (19)

—

From Eq. (19) it follows that the time position of the maximum of the echo signal amplitude is
defined by Eq. (17). Inserting Eq. (17) into Eq. (19) we have

M, 41, - 31
V(t,,t,, 7,1) = Bexp ~~;‘.._2. - AM,ch[z- _‘4___2) ) (20)
2 5 2 .

]

84

Fig. 1. The temperature dependence of (27 + o
t, = 1,/2 — t,) for polycrystalline NH,CI at S
different pulse spacing (¢, = #, = 3.6 pns). +
The solid line is the theoretical curve ]
(AM,7,/M,). The values of 7 were obtained €
from the high temperature values of the time 4').‘
position of the maximum solid echo +
amplitude using the equation: f,= 27 + ¢, — &
t/2;m—7=223 s, @ —7=29.7 us; Ao — 7=

38.1 ps.
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From Eq. (17) we see that the time position of the maximum solid echo amplitude is simply
connected with 7. Figure 1 shows the theoretical and experimental temperature dependences of
2t+ t,—t,/2—1,)=AM, 7./ M, obtained for polycrystalline NH, Cl at different pulse spacings.
The theoretical curve was obtained using the following parameters [1]: 7, = (2.16 x 107 g)
exp (19.85 kJ- mol"\/RT); M,=4.74 x10°® T%; AM, = 46.15 x10"® T2. The agreement between
theory and experiment is reasonable though there are large errors at the ¢, measurements.

References

[1] P. Bilski, N. A. Sergeev, J. Wasicki, Materialy XXXI Ogdlnopolskiego Seminarium NMR
(Ed. J. Hennel) pp.139-142, Krakow, IFJ, 1999; Abstracts of RAMIS 99, Poznan-Kiekrz (1999) 56,
Appl. Magn. Res. 18 (2000) (in press).

[2] N. A. Sergeev, Solid State NMR 10, 45 (1997).

[31 C.P. Slichter, Principles of Magnetic Resonance, Springer, Berlin (1980).



