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Abstract. The effects of nonzero pulse widths on the solid-echo signals in solids with molecular
motions have been investigated. It has been shown that in the slow-motion region (M,z? =~ 1) the
amplitude of the echo signal is reduced and the maximum of the echo signal is shifted to the end of
the second pulse. Comparison of the developed theory with experimental results obtained on poly-
crystalline CHy and NH,Cl demonstrates good agreement between them.

1 Introduction

The “solid-echo” technique 905 — 7— 905 — Acq(f), proposed by Powles, Mansfield
and Strange [1, 2] provides a means of circumventing the receiver dead-time
problem which would otherwise cause the omission of a major part of the free
induction decay (FID) signal. This technique is a powerful method of studying
molecular structure and dynamics in solid state by 'H nuclear magnetic resonance
(NMR). General reviews of application of deuterium solid-echo technique have
been recently published [3, 4].

It is now well-established that solid-echo signal can be significantly distorted
in the so-called slow-motion region and the nature of this distortion may be used
to obtain information about the motional mechanism and the motional param-
eters of nuclei in solids. At the present time, there have been published a great
number of papers describing analysis and application of “solid-echo” technique
to the molecular dynamics investigations in solids {4-14]. It has been assumed
almost in all of these papers that radio-frequency (RF) pulses are the delta-func-
tions. In the delta-function approximation of the RF pulses it is assumed that
for the amplitude @, and the widths ¢, (i = 1, 2) of the RF pulses @,t, = const
at t; — 0 and @, — oo. This approximation is not good enough for solids because
the experimental RF pulses have values of their amplitudes comparable with the
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NMR linewidth in solids. The effects of the finite RF pulses on the solid echoes
with rigid lattice have been discussed in [15-17]. It has been shown that the
internal interactions (dipolar or quadrupole) of the nuclei during the hard RF
pulses produce the shift of the echo signal maximum from the time 27 and the
maximum of the echo signal is observed at 7, = 27+ 1, — £,/2 [15-17].

In this paper we consider the effects of the dipolar interactions of the spins
during the RF pulses on the solid-echo signal for the case when there are the
molecular motions in solids.

2 Theory

Let us consider an ensemble of nuclear spins in a high static magnetic field B,
(B, 110Z2). The equilibrium density operator p at £ =0 can be written in high-
temperature approximation as [18-20]:

p(0) = I, (h

where = hoy/kT, @, = yB, is the Larmor frequency (y is the magnetogyric ratio
of nuclei) and T is the temperature of lattice.

After the first RF pulse (RF field in a coordinate frame rotating with the
Larmor frequency about B, is B))) the density operator in the rotating coordinate
frame is given at the time ¢, (¢, is the width of the first RF pulse) by [18-20]

p(t,) =U,(1,,0)p(0), )

where the evolution superoperator Ul (#,,0) is given by
4 bl )
$ AT s ’ 1 T gt ’ 7
U(t,0) = 1-if L, (" dz —Ejdt [LeL(Ydr +... (3)
0 0 0

and the Liouville superoperator il(t’) has the following form:
L&) =[-o 1, + (1), ...]. (4)
Here o, = yB, and c#7(t') is the secular part of the dipolar Hamiltonian [18]:

Oyé(t/)zzbg(t/)(zlizljZ Iyl =1y 1y). (5
£

In the case of the hard RF pulse (@, > ||c#,(¢')|), the elements of the in-
teraction Hamiltonian <, (¢') noncommuting with /, may be ignored in Eq. (5)
and the Liouville superoperator L (') may be replaced by [21, 22]:
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F oo 1 o
L) = [— w1y —5@7@0 ), } s (6)
where [19]
@7@(1,)22%(‘,)(211'}'1,‘)/ _IiX[jX _[iZI/'Z)' @)
LJ

Assuming the first pulse is a 90°-pulse (@t, = n/2), we have from Eqs. (1)~

(7N:

i tl r r 14 1 Il l/tl 7 14 - 14 !
p(t) =ﬁ{1+EJ'LY(t)dt —g_[dt [ L, )Ly dt +...}1X , (8)
0 o0
where
L@ty = [, .]. 9
After the first RF pulse the free evolution of the density operator is described

by the Hamiltonian <%#,(¢') and at the time 7 (the time 7 is measured from the
beginning of the first pulse) the density operator has the following form:

plr.t) =Uy(z,t)p(t) (10)

where the evolution superoperator Uo(r, 1) is

Ug(z,1) =1-i[L,()d? —-12-jdz"jiz(t")iz(ﬂ)d:'+..., (11)
A 4 4
and
L, (t") [, (t'), ..]. (12)

Inserting Eq. (8) into Eq. (10) and with Eq. (11) we obtain:

- 4 4y R T
p.t) = ﬁ{l + S L) ar — 2[4 | L) E e i L) dr
1] 0 0

T hH . R T o R
+ %'[dt”jLZ (t"L,(¢yd1 - %J'dt”j' L,(t"L,(/)dr + ..}IX : (13)
A 0 1 4

If at the time 7 the second RF pulse is applied along the 0X-axis in the ro-
tating frame, the density operator becomes:

pty,7, tl):[/z(r"'tz:f)p(f: 4), (14)
where
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T+ 1 T+ T+,

Ut +t,,7) =1—1i jL‘z(t')dt'—E fde" [La"L,ydt +... (15)
and the Liouville superoperator iz(t') has the form:

Ly(t") = [~od x + (1), .. (16)

In Eq. (14) and Eq. (15) ¢, is the width of the second RF pulse.
In the case of the hard RF pulse we may again retain iny the secular terms
or the terms commuting with [, in &#%5(¢'), and replace L,(t") by

I e 1 N
Lz(t){— oLy~ )} (17)
where
C%((t,)zzbij(t,)(ZIiXIjX _IiYIjY "Iizljz)- (18)
iLj

Assuming the second pulse is also a 90°-pulse (¢, = n/2) we obtain from
Egs. (13)-(17):

s 4 4 r
, p(fz,T, tl) = ﬁ{l+‘;—ILZ(t’)dt'_%Idt”J.LZ(t”)LZ(t/)dZJ_iJ'Ly(t/)dt/
0 o} 0

b4

T 4 R R T . R
+ % [de” J L, hdr - %j dt” (L, (") Ly (&) dt'

4 i

T+, 1

—% fde[LyanL, @) dr
T 0

1r+tz T .
+— |d"V L, (DL, (YA + .5, 19
2[ I » (L (1) } (19)

After the second RF pulse the free evolution of the density operator is de-
scribed by the Liouville superoperator L,(¢") (Eq. (12)) and at time ¢ (the time
t is measured from the beginning of the first pulse) the density operator has the
form:

plt 1,7, 1) = Uyt T+ 1) plty,7, 1) (20)
where
Uy(t, o+ ) =1-i [L,(¢')dt -% [de” [L, L, ()de + ... (1)

T+t T+t T+
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Inserting Eq. (19) into Eq. (20) and with Eq. (21) we obtain:

s 4 R 4 4 R R T R
Pl 1,7, 1) = ﬂ{l + 2 L @)ar = [ar L)L )ar - [ L) dr
0 0 0

4
1 T 4 R R 1 T z R
+— [de" [L, ¢ (YAt == [de” [L, (") Ly () d Y
2 4 0 2 1 f
T+, 1 T+, T

4 [de” Iﬁx(t”)iz(t')dt’+5 [de" [Ly@L, () de
T 0 T

h

+% tjdt"t]iz(z")iz(t')dt'- ]dt”]iz(t”)ﬁy(t')dt’
0

T+ THy

' t
~Liae (L,eni,wyar b, (22)
2 X

T,  T+h

The observed transient response of the ensemble of spins or the two-pulse
signal is given by [18-20]:

Trip(t. 1,7, 1) Iy}

Vit t,,z, t,) =
(t, 1,7, 1) T (2)

) (23)

where the upper bar denotes the average of the density operator on the random
motions of nuclei.

Substituting Eq. (22) into Eq. (23) and evaluating the traces in Eq. (23) we
obtain:

Vt, 1,7 1)) = ﬁ{l —%F(t, tyoT, 1)) + } (24)

Here

F(t, t,,7,1) = %tljd t 'ljh ", Hde + ]d " tlj'h " Hde
0 0 0

f

+ ]dt" Tj'h (", Hdt - ]dt" ti[h (" Hde

f 4 r+t, 0
4 T t t
=2 [de" fn(e" Nde + [de” [n (", )dr, (25)
T+, THL, TG
and
h(t", 1) = WY b, (t") b,(t) (26)
iLJ
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is the correlation function of the dipolar local fields [18-20].
In Eq. (26) [18-20]

3 1
W =ZyR2I+1)—, 27
27 ( )N 27

b, (") = R (t")[1 -3 cos? ©;(¢")]. (28)

In order to calculate the correlation function 4(t”, ") we consider the simple
model of the molecular motion in solids between discrete lattice sites €2, (k = 1,
2, ..., n) [23]. We assume that the random process describing the molecular mo-
tions in solids is a stationary Markovian process [24, 25]. For a stationary Markovian
process the correlation function % (¢, ¢') depends only on |t” — ¢'| and A(f) (t > 0)
can be written as [24, 25]:

h(t) =W, 3 P(£2)P(£2,010, .0)b(£2) b(£2,). (29)

ijlm

Here P(£2)) is the probability that at time ¢ = 0, the random function b,(¢)
is equal to b;(£2), while P(£2,0]€,,1) is the conditional probability that if at
time 7 = 0 the random function will be equal to b,(£2,) [24, 25].

For the random Markovian process the conditional probability P(£2,,0|£2 ,?)
satisfies the Smoluchowski equation [24, 25]

agP(Q,,OLQm,t):ZP(Q,,0|.(2k,t) W, » (30)
’ k=1
with the conditions [24, 25]
P(2,0(02,,00=09,,, 3D
2 P(2,0102,,0=1, (32)
m=1
2 W, =0. (33)

m=

In Eq. (30) W, (k # m) is the rate constant which describes the probability
of the random variable €2(f) changing from 2, to 2 by one jump [24, 25].
Assuming that (/ = m)

Wi = — (34)

nr,

it is easily obtained from Eq. (30):
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P(£2,012,,0) =%[1—exp(— TiﬂJrexp(— %}5,,". (35)

Inserting Eq. (35) into Eq. (29) and assuming that P(£2)) = 1/n we have

h(ir|):M_2+AM2exp[—ﬂj, (36)
T

[+
where

2
— 1 n _
M, = WZ[;Z%(Q,()} = WY (b,) (37)
i J k=1 ij

is the second moment of motionally narrowed NMR line {18, 23] and

AM,=M,-M,. (38)
In Eq. (38)
M,=W2.b (39)
iJj

is the second moment of NMR line in rigid lattice [18, 23].
Using the correlation function (36) and calculating the integrals in Eq. (25)
we obtain the following expression for the solid-echo signal:

2
Vi, 4,7, h)= ﬁ{l —%Mz\:t —(22’ +1, —%):‘

- AM,7}R(, 1y, 7, tl,rc)+..}, (40)

where

7 ¢t 3t t 1 t t
R(t,l‘z,‘[,tl,TC):———+—————1_—2_-—exp -4 — exXp S
4 4 T T

T 47 T .

c c C [

2 P T, 2 P T, 2 P T,

1 z’+t2] ( t—r] ( t—r—tzj
+—exp| — +exp| ——— |+exp| -——=

2 T, T, T,

1 T 1 T+ -
+—exp]—— |+ —exp| —-——|. 41
> &P TJ > p[ J (41)

4 TC
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In the case of the polycrystalline sample we must average Eq. (40) over all
possible orientations of the crystallites. If we denote the averaged values of M,
and AM, as (M,) and (AM,), then for the small 7 and ¢t we may write:

2
V(t, 4,7, 1) = ﬁ{l —%(X/[:) |:t —(2r+tz —%ﬂ —(AM,)T?R(1, t,, 7, tl,rc)+..}

2
hw 1 — t
~ k—Texp{— 5<M2){t - [21 +t, - EIH
—(AM )72R(t, t,,1, tl,Tc)}. (42)

From Eq. (41) and Eq. (42) it follows that at (M,)z? > 1 (the case of rigid
lattice) and at (M,)7? << 1 (the case of motionally narrowed NMR line) the maxi-
mum of solid-echo signal is observed at ¢, = 27+ ¢, — #,/2 [15-17].

If we consider the delta-functions approximation of the RF pulses and put
in Eq. (41) ¢, = ¢, = 0 we obtain from Eq. (42) the known result [7]. From the
analysis of Eq. (42) it follows that in the slow-motion regime ((M,)z2 ~ 1) the
amplitude of the echo signal is reduced and the maximum of the echo signal is
shifted to the end of the second pulse.

3 Results and Discussion

We apply the obtained theoretical results to the analysis of temperature depen-
dences of the solid-echo signals in polycrystalline benzene (C,H,) and polycrys-
talline ammonium chloride (NH,Cl). These compounds were chosen because they
have been the subject of extensive studies by different experimental NMR tech-
niques (see references in [26, 27]). It is now well-established that in NH,CI there
are the reorientations of the ammonium ions about threefold and twofold sym-
metry axes [26]; and in solid benzene there are the reorientations of C,H, mo-
lecules about its sixfold symmetry axis [27].

All 'H experiments were performed on an NMR spectrometer operating
at 60 MHz. The length of ©/2 pulse was 3.6 us. The temperature ranges stud-
ied were from 133 to 273 K for NH,Cl and from 100 to 278 K for C;H,. Mea-
surements below 100 K were not possible with the equipment applied.

Experimental measurements of the maximum echo time position (¢,) at dif-
ferent pulse spacing for polycrystalline NH,Cl and C,H, as function of tempera-
ture are shown in Figs. 1 and 2. One can see that for any pulse spacing the
maximum of two-pulse signal does not depend on the temperature in the region
T> 160 K for NH,Cl and in the region T > 130 K for C,H, and maximum echo
is observed at f, = 27+ ¢, — t,/2.
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Fig. 1. Temperature dependence of the time position of the maximum solid-echo amplitude for poly-
crystalline NH,CI at different pulse spacings: a £=139.4 us; b 7=29.4 ps; ¢ 7= 204 ps.

At T < 160 K for NH,Cl and T < 130 K for C,H, the time positions of the
maximum of the echo signals are shifted to the end of the second pulse and
echo signals disappear. The solid and broken lines in Figs. 1 and 2 are the theo-
retical curves for the time positions of the echo maximum, as calculated from
Eq. (42) with the results of relaxation studies of these compounds [14, 26-28].
For NH,Cl we used the following parameters: 7, = (2.16:107'* s)- exp(19.85
kI molRT); M, =4.74-10"% T AM, = 46.15-10"% T2 For C.H, we used
z,=(13-10"" s)-exp(17.5 kJ-mol"YRT), M, = 1.5-10°% T2 AM, = 7.16-1078 T2,
The agreement between theory and experiment is reasonable especially since no
parameters have been adjusted.

Experimental measurements of the maximum echo amplitude at two different
pulse spacings for polycrystalline NH,Cl and C,H, as function of temperature

f. (us) 707

60 -

50 4
40 1

30 |
20 ] T M T T T T T T 1
50 100 150 200 250 300 T (K)

Fig. 2. Temperature dependence of the time position of the maximum solid-echo amplitude for poly-
crystalline C;H, at different pulse spacings: a 7=29.4 ps; b r=244 ps; ¢ v= 204 ps.
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Fig. 3. Temperature dependence of the maximum solid-echo amplitude for polycrystalline NH,Cl at
different pulse spacings: a 7=204 ps; b =294 ps.

are shown in Figs. 3 and 4. In all cases, the plotted points were normalized so
that the maximum value of the echo amplitude was set equal to 1.0. From Figs.
3 and 4 it follows that for different pulse intervals the maximum echo ampli-
tude increases and then falls down rapidly to reach minimum values in the re-
gion of 130 K for NH,Cl and 100 K for C,H,. The solid lines in Figs. 3 and 4
are the theoretical curves obtained from Eq. (42) with the same parameters as
for the theoretical curves in Figs. | and 2. From Figs. 3 and 4 we see that the
developed theory describes rather well the observed temperature dependences of
the echo amplitude.

In conclusion, it is clear that the temperature dependences of the time posi-
tion and the amplitude of the solid-echo are sensitive in certain temperature re-
gions to the details and thermal parameters of molecular dynamic process.

The observed difference between theory and experiment may be connected
with the fact that the results of our calculations are sensitive to the used param-
eters. Another explanation of this discrepancy is that the developed theory is only
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Fig. 4. Temperature dependence of the maximum solid-echo amplitude for polycrystalline CH, at
different pulse spacings: a 7= 204 us; b 7= 244 pus.

applied when 7' < ®,, w, (secular approximation). In order to understand these
discrepancies we intend to extend our study of solid echoes in solids with mo-
lecular mobility using the other compounds and considering the nonsecular con-
tributions to the relaxation of the solid-echo signals.
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