SEE

ELSEVIER

Solid State Nuclear Magnetic Resonance 10 (1997) 45-51

SOLID STATE

Nuclear Magnetic
Resonance

Effects of the finite pulse widths on solid echo signals

N.A. Sergeev

Institute of Physics, University of Szczecin, 70-451, Szczecin, Poland

Received 5 March 1997; accepted 17 March 1997

Abstract

The quadrupolar and dipolar interactions of spins during the radio frequency (RF) pulses are considered. It is shown that
due to these interactions the two-pulse echo signal is observed at the shifted time ¢, = 7+ 1, /2 (¢, = width of the first RF
pulse, 7= time interval between the pulses). © 1997 Elsevier Science B.V.

Keywords: Solid echo signal; Finite widths RF pulses; Mori formalism

1. Introduction

At the present time, there have been published a
great number of papers describing analysis and ap-
plications of two-pulses spin echoes in solids (solid
echoes) [1-19]. Almost all of these papers consider
the radio frequency (RF) pulses as delta-functions. '
This approximation is not good enough for solids
because the experimental RF pulses have values of
their amplitudes comparable with NMR linewidths in
solids. The effects of the finite RF pulse widths on
the solid echoes were discussed first by Bloom et al.
[20]. They had shown that for the nuclei with spin
I =1, their quadrupolar interaction during the RF
pulses leads to the shift of the maximum echo signal
from the time 7= 7. The obtained results are quite
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"In the delta approximation of the RF pulse, it is assumed that
wt;=const at t; > 0 and w, > %. w, is the amplitude of the RF
field and ¢; is the width of pulse.

adequate for the case of the deuterium NMR, but at
the present time, it is not known how the internal
interactions of nuclei during the RF pulses distort the
solid echo signals when nuclear spin, I, is greater
than 1 and when the dipolar interactions taken into
account.

In this paper, we consider the effects of quadrupo-
lar and dipolar interactions of the spins during the
RF pulses on solid echoes for general case, when
nuclear spin />1 and when the interactions of
multispin system are dipolar ones.

2. Spin echo after the delta-pulses

In this section, we consider formation of the
two-pulse echo signals when the RF pulses are the
delta-pulses. Our purpose is to briefly describe the
formalism of solving the Liouville equation which
was originally introduced by Mori [21,22] and later
extensively developed by Dupuis, Lee, Grigolini,
Sen and others ([23-30)). In the solid state NMR this
formalism was also widely applied [31-41].
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Consider an ensemble of nuclear spins in high
static magnetic field B, (B,llOZ). The reduced equi-
librium density operator o at f, =0 can be written
in high-temperature approximation as [42]:

o(0)=1, (D

The first 909 pulse (Fig. 1a), RF field of which lies
along the OY-axis in the rotating frame, transforms
the density operator into:

c(0") =1 (2)

After the RFD pulse end, the free evolution of the
density operator is described by the Hamiltonian 7,
and after the time 7 (Fig. 1a), the density operator
has the form:

o (1) =exp(—itLo)l x> = I (7)) (3
where:
Ly=[#....] @

is the Liouville superoperator [31].
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Fig. 1. Schematic representations of the two-pulse sequence: (a)
for the delta-pulses, and (b) for the hard finite width pulses.

The ket-vector |I,(#)) in the Liouville space may
be expressed as superposition [31]:

(7)) = X G,(7)In) (5)
(n)

of the ket-vectors |n) which form an orthogonal set:

{nlm) /{nln) = §,, (6)

with inner product defined as:
(nlm) = Tr(n*m)

These vectors satisfy the recurrence relation:

[n) =Loln— 1) — 32 ,In—2) (7)
where:

v2=<{n+1n+1)/{nln) (8)
and:

v =v2,=0

The functions G,(t) in Eq. (5) satisfy the system of
equations [31]

idGy(1)/dt =2 G\(1)

(9)
ldc;n(t)/dt= Gnfl(t) + 122 Gn+!(t)

From Eg. (5), we see that shape of the free induction
decay (FID) after hard delta-pulse is described by the
function G,(1).

If at the time 7 (Fig. 1a) after the first pulse, the
second delta-pulse is applied, > the density operator
becomes:

o(77)=Y.G,(7)|RnR™") (10)
(n)

where unitary operator R describes the action of the

second pulse [42].

After the second RF pulse, the free evolution of
the density operator is again described by the Hamil-
tonian #, and at the time ¢ (Fig. 1a), the density
operator has the form:

a(t)=Y.G,(7)exp(—itL,)IRnR™") (11)
(n)

% At the time 7, the cluster of closely spaced pulses-composite
pulse [43,44] may be applied to the ensemble of spins. However,
the combination of two or more pulses may be replaced by the
one pulse [36], so we write in Eq. (10) one pulse operator R and
so for the composite pulse.
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The observed transient response of the ensemble of
spins, two-pulse signal, is given by [42]:

V(1) ={a(2)0)/<00) (12)

Using Egs. (5) and (11), we obtain from Eq. (12) the
following general expression for the two-pulse sig-
nal:

V()= ¥ G, ()G,(T){mlRnR"")/{000) (13)

(n,m)

If the two-pulse signal V(z) contains the function
Gt — 7), we would say that the two-pulse sequence
leads to the formation of the echo signal.

From Eq. (13), it is easily to obtain the conditions
at which the echo signal may be formed. Indeed, as
was shown in Ref. [39], for the FID signal G(z + 7)
we may write

Go(1+7) =Go(1)Gy(r) + ch G(1)G\(7)

+ ... +1/U2 V12 1/'12‘1 G,(1)G(7)

o (14)

Replacing 7 — — 7 and using parity properties of the
functions G,(1):

Gy (1) =Gy (—1)

15
Griii(1) = =Gy i(—1) (19)
for each k=0, 1, 2, ..., we obtain:
Go(1—7) =Go(1)Go(7) = viG ()G \(T)
+ v G (1) Gy(7) — ... (16)

The function G,(r — 7) has a maximum at =7,
G0 = 1.

Comparison of Egs. (16) and (13) yields the
following conditions at which the echo signal may
be obtained:

{m|RnR™ ") =0, ifm#n (17)
{m|RmR™") /{mlm) =1, if m =2k (18a)

{mlRmR™ ') /{mlm)=—1,ifm=2k+1 (18b)

2.1. Echo signals for quadrupolar nuclei with I =1

We apply now the obtained above results to the
quadrupolar nucleus with spin /= 1, whose Hamil-
tonian has the form [42]:

#o=(0,/3)31; ~1(1+1)] (19)

The dipolar interaction Hamiltonian of two spin sys-
tem with spins /, =1, = 1/2 may also be written in
the form Eq. (19), as was shown first by Metzger
and Gaines [45].

The Liouville space of nucleus with 7= 1 has the
dimension (21 + 1)* = 9 [46]. However, as shown in
Appendix A, to describe the free evolution of I,
operator in the Liouville space only two vectors 0)
and [1) are needed. Using Hamiltonian Eq. (19) in
Eq. (9) gives:

Gy(7) = cos( w,T) (20)
Then Eq. (5) reduces to:
[1, (7)) = cos( qu)\O) +sin(wq'r)|l’> (21)
where [1) = —il1) /o, (T[T} /{010) = 1)

We see that after the first 90‘,’, pulse, the ket-vec-
tor [1;(7)) rotates with the angular velocity w, in

the plane spanned by two vectors |0) and [I') (Fig.
2a).
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Fig. 2. Trajectories of the vector |/,(7)) for the quadrupolar
nucleus with spin =1 after the first 90% pulse (a) and after the
second 90% pulse (b).
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According to Egs. (17), (18a) and (18b), the
two-pulse signal contains the echo signal, when:

(O|RIR™'Y =(R7'OR|1) =0
{O|ROR™")/€00) =1 (22)
CURIRT ) /(M) = —1
Using the properties of the rotating operator R [36],
it may be shown that only the operator:
Ry =exp( Limly/2) (23)
satisfies conditions Eq. (22). Then from Eq. (21), it
follows:

. ~
[Ry I, (T)Ry') = cos( qu)\0> — sin( qu)|1>

(24)

Thus the second 90% pulse rotates the ket-vector
|1,(7)) around the axis [0) at 180° (Fig. 2b). We see
that 90% RF pulse acts in the Liouville space as
180‘%> pulse so that we may identify the solid echo

signal with Hahn’s echo signal (90° — 7 — 180° — ¢)
in the Liouville space.

2.2.. Homonuclear spin system with dipolar interac-
tions

The dipolar Hamiltonian of the homonuclear spin
system has the form [42]:

Hy=H = Zbij[zlli[é._l)i(l)];_lf’[{/] (25)
G.j)

From Eq. (7), it follows that vector |2k + 1) contains

only ‘odd’ superoperators [2¢*', [2¥7!, .. and the

vector [2k) contains only ‘even’ ones I3f, 3¢~

... Thus, the conditions Eqs. (17), (18a) and (18b)

are fulfilled if:

RI,R™' =1, (26a)
R#Z,R™' = -7, (26b)

The first condition Eq. (26a) may be satisfied only
by the RF pulse of the type:

Ry =exp(—iBly) (27)
The Hamiltonian Eq. (25) may be expressed through
the components of irreducible tensor operator of the
second rank 70/ (m= +2, +1, 0) as [36]:

2m
Fo= L ADT (28)
G.j)

This representation of /), allows to analyse transfor-
mations of the /#, under acting of the RF pulses
[36,46-48]. Using Wigner matrices [49] for descrip-
tion of the RF pulse effect, we conclude that the RF
pulse Eq. (27) cannot fulfils the second condition Eq.
(26b).

However, as we will show now, it is possible to
satisfy both conditions Egs. (17), (18a) and (18b) for
some vectors |n) with small index n. Indeed, for the
rotating operator Eq. (27) and 8= /2, we have:
RyZ\Ry' =#y= ). bij[le',I{, — Iyl - Iél%]

()]

(29)
Using the property of dipolar Hamiltonian [37]:
Hy+ T y+ #,=0 (30)
where:
Fo= T by 20i 1~ 11— 131] (31)
G,j)

and Hamiltonians /#, and %, are defined by Eqs.
(25) and (29), we obtain:

[RxORY') =10 (32a)
IRy1R}') = —I1) (32b)
Hence for the short enough times, 7, 1< |7,
(17 = (7o #7,)'?), we may write:

V(1) =Go(1)Gy(7) - VgG](t)Gl(T)
+...=Gy(t—7) (33)
This result is also well known [3-5,16,17,38]. How-
ever, written in the form Eq. (33), it will be impor-
tant for our considerations below because in analysis

of the solid echo signal we may now account in Eq.
(13) only the functions G(r) and G ().

3. Solid echo after the hard finite widths pulses

In this section, we consider the calculation of the
solid echo (909 — 7—90% — 1) signal for the case
when RF pulses are not the delta-pulses. Using the
Liouville superoperator formalism, we may write for
the two pulses signal (Fig. 1b) the following expres-
sion:

V(1) = {Iylexp( —iLyt)exp( —iL,t,)
Xexp( —iLy)exp( —iL 1)1, /I \I})
(34)
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where:
Li=[#,—wl,,...] (35)
L=[#y—wl,...] (36)

and o, = yB, is the amplitude of RF fields.

For w, > [|.%,]l, the elements of the Hamiltonian
#, noncommuting with I, , may be ignored in Egs.
(35) and (36) and effective superoperators L, and L,
may be written as [39]:

Li=—[oll+#:/2,...] (37a)
Ly=—[w I, +#,/2,...] (37b)

The dipolar Hamiltonians /', and /#, were defined
by Eqgs. (29) and (31). In the case of quadrupolar
interactions, Hamiltonians #y and /#, have the
form [39]:

iy = (/35 wl[3(1i,Y -1+ ] (@9)
Assuming o,#, = w,f, = /2 and using Eq. (5), we
obtain from Eq. (34):
V(1) = Gol1)Go(1,/D)Go(7)
+ v2Gy(1)G\(1,/2)G(T)
=G (1)Gy(1,/2)G\(T)
X (Ulexp(iLy 1,/2)I1) /€0[0)
—G(1)G\(1,/2)Gy(T)
X (lexp(iLy1,/2)[1) /C00Y + ... (39)
where:
Ly=[#%,...] (40)

In the approximation w, > ||Z,|l for which the
superoperators Egs. (37a) and (37b) were introduced,
we have:

17,0ty < 1
50 to a good approximation, we may write:
(Llexp( Ly 1,/2)I1) /<0/0)
= [<HI0) + i(1,/2) <L Ly 1)
+...] /€0y = <11y /{0l0) = v} (41)

Inserting Eq. (41) in Eq. (39), using properties Eq.
(15) of the functions G,(¢) and Eq. (A2.1), obtained
in Appendix B, we have:

V(1) = Gy(1)Go(—1,/2)Go( —7)
+v5[Go(1)G(=1,/2)G\(~T)
+G(1)Go(—1,/2)G(—T)
+G(1)G(—1,/2)Go(— )]
+...=Gy(t—1-1,/2) (42)

As was mentioned in Section 1, the same result was

first obtained by Bloom et al. [20] for the quadrupo-

lar nucleus with spin 7= 1. It is interesting to note
that predicted time 7, = 7+ ¢, /2 when the maximum

of solid echo signal is observed does not depend on
the width ¢, of the second RF pulse.

4. Conclusions

We have calculated the effects of the internal
interactions of spins during the hard finite widths RF
pulses on the solid echo signals. The most important
result of our consideration is that for homonuclear
dipolar system and for the quadrupolar nuclei with
1> 1, the solid echo signal after the sequence 909 —
7—90% — 1, has its maximum at t, = 7+1¢, /2.
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Appendix A

In this appendix, we show that for nucleus with
spin /=1 only two vectors [0) and |1) in Eq. (5) are
not equal to zero.

*In [20], the times 7 and  were measured from the beginning
of the first pulse. We are measuring the time ¢ from the end of the
second pulse and 7 from the end of the first pulse (Fig. 1b).
Replacing in our expressions (7) with (t —7 —1,) and (7) with
(7 —t,), we obtain that maximum of solid echo signal has been
observed at 1, =27 + 1, — t; /2 [20].
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For Hamiltonian Eq. (19), we have:
0y =1,
1) = Llo) = iwy( L1y + 1y 1)
2 = Loll) — v3l0) = ol (1714
+2L I L+ I I~ 1)

(AL.1)

In the case of spin I=1, the dimension of the
Hilbert space is (2/+ 1) = 3. Then for any linear
spin operator A, we can write:
Ay —A A Ay
Ag) Ay —A Apy =0
Ay Ao A, -4

(A12)

where:
A, = {mlAln)

and m, n=1, 0-1

From Eq. (A1.2) for A =1, , ,, we have:
L=L.=I,.}=1I, (A1.3)
Using Eq. (A1.3), it is easy to obtain:
(I + 200, + Iy I7) = Iy (A1.4)

Inserting Eq. (A1.4) into Eq. (A1.1), we see that
state [2) is the zero operator:

2)=0

Hence, from Egs. (8) and (7), we obtain:
vi=_R)/{11)=0
BY=L,R)—vi1)=0

WY =LyB3>—vil2) =0

(AL5)

Appendix B
In this appendix, we show that the function G(#)
may be written in the form:
Go(t, + 1 +13) = Go(1,)Go(1,) Go(15)
+13(Go(1,)G (1) G\(13)
+Gy(1)Go(1,)G\(13)

+G(1)G\(1,)Go(13)) + ...
(A2.1)

From Egq. (5), it follows:

G\(t, +1,) = (llexp( —iLyt,)
Xexp(—iLyt,)I0) /C1I1)  (A2.2)

Using Egs. (5) and (7), we have from Eq. (A2.2):

Gl(tl + t2)

=) [Gm(ll)Gm—l(tz) + Vrsz(tl)Gm+l(t2)]
(m)

XLmlm)y /10D
=Go(1)G(1) + G(1)Go(1) + ... (A23)

Inserting Eq. (A2.3) into Eq. (14), we obtain Eq.
(A2.1).
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