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Abstract

The shape of the free induction decay for the case in which the amplitude B, (B, = w,/v) of the RF pulse is comparable
with local magnetic fields at sites of the nuclei is considered. It is shown that the shape of the FID G(t + 7) (where 7 is the
width of a RF pulse, 1 is the time after a RF pulse) depends on the shape of the FID Gy(t) following a hard, delta function
RF pulse and on the shape of the function F(7), which describes the evolution of the longitudinal nuclear magnetization M,
under the effect of the hamiltonian (H, — w,Iy), where H, is the interaction hamiltonian of the nuclear spin system.
Calculations of F;, (1) and G(t + 1) for different interaction hamiltonians H, are presented. © 1997 Elsevier Science B.V.

All rights reserved.
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1. Introduction

The free induction decay signal (FID) is the signal
observed in the nuclear spin system after the radio
frequency (RF) pulse. If a state of nuclear spin
system at time t=0 can be described by a spin
temperature and a RF field is much larger than the
NMR linewidth, so that w,7= const at 7— 0 and
w, = %<, the shape of the FID following a RF pulse
does not depend on the angle by which the pulse has
rotated the magnetization [1]. In this case the Fourier
transform of the FID is identical to the shape of the
CW spectrum obtained by the slow passage of a
continuous RF field [2]. At the present time the
approximation of a hard, delta function RF pulse
(delta RF pulse) is widely applied in NMR of a
liquids and solids. For liquids this approximation
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works well, but for solids the experimental RF pulse
has the strength and the duration, which have compa-
rable values with the linewidth of the NMR spectrum
and the time of the FID decay. The effects of the
finite pulse width on the shape of the FID were
discussed in [3-7]. Barnaal and Lowe [3] calculated
the FID of the two identical spin —1/2 nuclet
subject to the dipolar interaction and demonstrated
that the FID has its origin at approximately the
center of the RF pulse. Bloom, Davis and Valic [6]
obtained the same result for the nuclei *H subject to
the quadrupolar interaction and introduced the spec-
tral distortion factor which allows the correction of
the spectrum NMR obtained by the Fourier trans-
form of the FID. Their results are quite adequate for
the case of the deuterium NMR but at the present
time it is not obvious how to determined similar
correction factors for the cases when the nuclear spin
I>1 and when there are no isolated pairs of spin
1 /2 nuclei in solids.
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In this paper we consider the effects of the finite
pulse width on the FID shape for the general cases,
when there are no isolated spin groups and 7> 1.

2. Theory

Consider an ensemble of a nuclear spins subject
to a strong static magnetic field Byk. The reduced
equilibrium density matrix operator at =0 can be
expressed in the high-temperature approximation as

(1]

p(0) =1
After the RF pulse (RF field in a coordinate frame
rotating with the Larmor frequency w,= —vyB,

about B is B,j; vy is the magnetogyric ratio of the

nuclei) the density operator in the rotating coordinate

frame is given at t = 7 (7 is the width of a RF pulse)

by

p(7) =R(7)p(O)R™'(7),

where

R=exp{—iT(Hy— w,ly)}

and H, is the interaction hamiltonian (£ = 1) of the

nuclear spin system in the rotating frame; w, = yB,.
After the RF pulse the evolution of the density

matrix operator is described by the hamiltonian H,
and at the time ¢ the density matrix operator is

p(1+7) = U()R(r)p(O)R™ (1)U (1),
where
U(t) =exp{ —itH,}.
The transient response of the ensemble of spins in

the rotating frame—the signal of the free induction
decay, is given by [1]

Trlo(r+ 7) Ix]
Tr(13)
Introducing the Liouville superoperators [8—11]
Ly=[H,,...],
Lr={""(HO_wIIY)]’ (2)
expression (1) can be written as
< I lexp(iL,) - exp(itLy)l Iy >
(gl ’
(3)

G(t+71)= (n

G(r+171)=

where [8—11]
(AIB) =Ti(A*B),

and A% is the operator hermitian conjugate of A.
As was shown in [9] the ket-vector exp (izL,)| Iy >
in the Liouville space can be expressed as

exp(itLy) -lIx) = Y. G, (1)In), 4
where
]0>=1x,

n= 1 (kILGI0) -
In) = L3l0y — ¥ ————Ik), (5
T ,EO (klky )
and
{nlk)=0, n+k (6)

The functions G,(t) are the solutions of the system
of equations [9,10]

d
"iEGo(t) =5 Gy(1),

G =G, () 3G (0. ()
dr
where
(n+1ln+1)
2 _ —_—
e R (8)

From Eq. (4) and Eq. (5) we see that the function

(Iylexp(itLy)Hy )

— S (9)
IglIy)

is the function, which describes the shape of the FID

after a hard delta 90°-pulse (w, 7=90°, w, ==,

T 0)[1,9].

We can establish the following properties of G (1)
at time ¢ =0 from Eq. (7) and Eq. (9)

Gy(0) =1,
G, (0)=0, n>0.

Go(t) =

The values 7 in Eq. (7) are simply related to the
Van—Vleck moments M, of NMR spectrum [9-11]
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By analogy with Eq. (4) and Eq. (5), we can write
the bra vector < I lexp(itL,) as

(I lexp(iTL,) = ZFB(T)<BL (10)
B

where

<0,|=Iz,
Bl <0,ILFa)

= B _ _— ’

CBl=OILf = T~ Cal, (#)

and

(alB)=0, a#8B.

The functions F,(7) are determined by the system
of equations

d
"iaFo(T) = ‘QgFl(T)’

d
S F() =B () + BiF g (7). (12)

where
(B+1B+1)
L N——
% =58

From Eg. (10) and Eq. (11) we see that the function
(Llexp(itL )1, (13)
(L)

describes the evolution of the longitudinal magneti-
zation M, = y#Al, in a rotating coordinate frame
under the effect of the hamiltonian (H, — w,1y).

At time 7=0, from Eq. (12) and Eq. (13) it
follows that
Fo(0) =1,
F(0)=0, n>0.

The power series expansion of exp (irL,) in Eq.
(13) leads to

= (i)

Fo(t)= X —C,1

Fo(r) =

where
CLIL2,)
Cp=_z__z (14)
Ay

are the moments of the curve obtained by the Fourier
transform of F(7).

The values {2} in Eq. (12) are related to the
moments C,

C,~C?
Q§=C2=w12, Q%=*4C 2,
2 (15)
1 C4C,— C?
2 c2c—62_""

By inserting Eq. (4) and Eq. (10) into Eq. (3) we
obtain the following general expression for the shape
of the FID after the RF pulse

(Bln)
G(t+7)=Y ——G,(1)F, (7 16
(1+7) =00y (1) Fg (7). (16)

In a strong static magnetic field B, the hamilto-
nian H, commutes with 7, (secular approximation
13))

[H,.1,]=0. (17)

Using Eq. (5), Eq. (11) and Eq. (17) we can
calculate < Bln>/<0[0>. These calculations
lead to the following expression for the shape of the
FID

G(t+71)= ———-Go(t) FO(T) +

_0()

Mdt

& '
2dJM)+Fh} 18)

In Eq. (18) we retain only the functions G,(¢) and Fy
(r)with n=0,1; B=0, 1, 2. From Eq. (12) we see
that this approximation of G(r+ 7) is a good ap-
proximation, when || H|lr < 1.

3. Discussion of the results obtained

In this section we discuss the evaluations of the
functions Fy(7) and G(r+ 7) for the different RF
pulses and the different interaction hamiltonians H,,.

3.1. Delta RF pulse (w,;7= const, w, > ®, 71— 0)

If the RF pulse is the delta RF pulse then the
interaction hamiltonian H, in the superoperator L,
can be ignored and from Eq. (14) and Eq. (15) we
obtain

2p
Czp—aol .

0} =wl 0= —=02=0. (19)

a
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Substituting Eq. (19) into Eq. (12) we obtain
Fo(7) =cos(wT) (20)

and from Eq. (18) we have for G(z+ 1) the well
known result [1]

G(t+71)=Gy(1)sin{ w,7).

3.2. The interaction hamiltonian is H,= Al,

For this case from Eq. (14) we have
Aol

Co= 08 +201A” + 0?A%,

and

Nl=w? N}=4A% 02=0.

The system of Eq. (12) can be written as

2 _ 4
C=w],C=w+

d
—i—Fy(7) = 0F\(7);
dr
d
- id—Fl(‘r) =Fy(1) + A’F,(71),
T

. d .
- 1$F2(7) =F(1).

The solution of this system of equations for Fy(7) is
2

A wl
Fo(7) = + Joi+4A%7).
o(7) wi + A w,2+A2ws( ! 7)

(1)
For the hamiltonian H,= A, the FID G,(1) is
described from Eq. (9) by

Go(t) = cos( Ar). (22)

By inserting Eq. (21) and Eq. (22) into Eq. (18) we
obtain the well known result also [1]

G(tr+ 1) = cos Osin( w,,7)cos( At)

1
— sin(286,; )sin® ( 5 wef'r)sin( At),

(23)
where
W= ‘/wzl + A%,
and
@,
cos O, = —.
wef

3.3. The interaction hamiltonian is H,= al} and the
nuclear spin is 1 (I=1)
For this case from Eq. (14) we have
B=0! 0=, 02=0}, 02=0
and from Eq. (9) for G,(¢) we obtain
Gy(t) =cos(at). (24)
For F, () we have from Eq. (12)
ar )sin( mf)

2 2

a
Fy(1) = ———==s5in
o) \/a2+4w]2 ( 2
ar ‘/az+4w,2"r
+cos(7)cos _—.

. (25)

Insertion of Eq. (24) and Eq. (25) into Eq. (18) also
yields the well known result [3,6]

G(t+71)=

2w, T
———-cos[a(r + —)]
yaz + 40? 2

\/az + 4wf T
—————2 .

X sin (26)

If we replace time #(¢ is the time after a RF pulse)
with ¢, = ¢+ 7 and assume that w, > a, then from
Eq. (26) we see that the signal of the FID has a
maximum at #, = (7/2)[3,6].

3.4. The interaction hamiltonian is the dipolar hamil-
tonian

If H, is the truncated dipolar hamiltonian [1]

HdZ= Zbu(zlizljz_l,x[,x‘“Iiyljv)’ (27)

i>j

then from Eq. (14) we obtain the following expres-
sions for the first moments C,

— 2
€, = oy,
C,= o+ wiM,,

Co= o +3M,0} + M, 0?. (28)
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Using Eq. (28) we find from Eq. (15)

2= o,
N=M,,
M,~ M}
0=t (29)
M,

The system of an differential Eq. (12) may be trans-
formed into the system of an algebraic equations by
the Laplace transformation method [9,10]

f(s)= [ f(r)ye "1ar.

0
The transformed system of algebraic equations is
isFy(s) + Q2F(s) =i,
Fuor(8) +isFy(s) + Q7F,,\(5) = 0. (30)
The formal solution of the system of Eq. (30) for

Fy(s) is given by [9]
1

Fo(s) = . (31)
0 s+ !23
gr
23
s+
s+ ..
If 22=07=..=0, then from Eq. (31) we obtain
s
FO( S) = m (32)

The opposite Laplace transformation of Eq. (32)
givesEq. (20).If Q2 =M, = A", Q7 =0} =..=0,
then from Eq. (31) follows the Eq. (21). The sum of
the infinite fraction in Eq. (31) may be calculated
assuming that: (a) £2=const at n>k and (b)
02=0at n> k[9,10].

Let 27 =0} =..=0. Using Eq. (31) and per-
forming the Laplace transformation of Fy(s) we
obtain

1
Fo(1) = —z—[cos(/\,-r) + cos( /\27)]

1 M, cos( A7) — cos(A,7)

— , 33
2 M, M- (33)
where
. (oM, M) orf v dot]
12 M, '

If M,=M?=q* then from Eq. (33) follows the
function (25) for the isolated two-spin system with
dipole—dipole interactions.

3.5. The hard RF pulse with the finite width. The
interaction hamiltonian is the dipolar hamiltonian

For this case we write the hamiltonian (27) in the
form

1 3
Hy = —EHdY + 5 Zb:j(IiZIjZ—IIXIjX)' (34)
i>j
where
Hyy = Zbij(zliYIjY_IiXIjX_IiZ[jZ)‘ (35)

i>)

It is now assumed that w, >||H,ll, but the RF
pulse is not the delta-pulse. In this case the elements
noncommuted with 7/, in the hamiltonian Hy, can
be ignored [3,4] and the effective superoperator L,
becomes equal

1
L= [...,~wllY~EHdY]. (36)
Insertion of Eq. (36) into Eq. (13) yields
1
FO(T)=cos(w17)G0(—5‘r), (37)

where the function G,(¢) describes the FID after a
hard 90° delta-pulse (Eq. (9)). Using Eg. (37) we
obtain from Eq. (18) that at w,7= 90°

1 1 d
G(I+ ‘r) = GO(’)GO(_ ET) + EE}_
XGO(t)-'_dl_Go(— —;-1-) + ..,
d(— 57‘)

(38)
From Eq. (9) for the function G,(#) we obtain
(see Appendix A)

Go(1, +1,) = Go(1)Go(1,) + V(%GI(II)GI(IZ)
+griGy(1)Gy( 1) + oo (39)
Using Eq. (39), Eq. (7) and Eq. (A4) we have
from Egq. (38)

G(t+T)=GO(t+%T)+.... (40)
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It follows from Eq. (40), that for the case of the
hard RF pulse with the finite width and at w,7= 90°
the FID of the nuclear multispin system subject to
the dipolar interaction has its origin, as in the case of
the two-spin system, at the center of RF pulse.

3.6. The hard RF pulse with the finite width. The
interaction hamiltonian is the quadrupolar hamilto-
nian (I>1)

The truncated quadrupolar hamiltonian is [1]
N
Z in[3IiZZ
i=1

Hy =

"(li'li)]' (41)

It is convenient to write the hamiltonian (41) in
the form

] 3 2 g2
Hy = — 2 QY 5 Z le(IIZ :x)v (42)
i=1
where
N
Hoy = L wo,[313 — 1(1+1)]. (43)

i=1

From Eq. (42) and Eq. (43) it follows
[HQYJY]ZO» [(1,22 Ilzx ]9&0

It is now again assumed that w, > || Hy, I, but the
RF pulse is not the delta-pulse. In this case in the
hamiltonian (42) only —H,y /2 can remain and

1

_HQY . (44)

L =
’ 2

vy — @ Iy —

By inserting Eq. (44) into Eq. (13) we obtain Eq.
(37), whence, according to Eq. (38), we have Eq.
(40). Thus, for the quadrupolar nuclei with 7> 1 the
FID after the hard RF pulse with the finite width at
w,7=90° has its origin, so as in the case of the
multispin dipolar system, at the middle of the RF
pulse.

4. Conclusions
We have calculated the shape of the FID for the

case of any ratio of the local magnetic field to the
amplitude of the RF pulse. The obtained Eq. (18) for

the shape of the FID is valid for the multispin
systems with the dipolar and quadrupolar interac-
tions. The most important result of our consideration
is that for the multispin dipolar system and for the
quadrupolar nuclei with 7 > 1, the FID after the hard
90° RF pulse with the finite amplitude and duration
has its origin at the center of RF pulse.

Appendix A

In this appendix we present a derivation of Eq.
(39). It foliows from Eq. (9) that at r=1, +1,

<Iylexp(it, Ly ) - exp(it, Ly)| Iy >

Go(t1 +1,)= <>
(A1)

Insertion of Eq. (4) into Eq. (A1) yields

< nlm
Gyt +1,) = ,,);;,TMG (1)G,(1,). (A2)
It follows from Eq. (7) that

G/ (1) =G,(1) (A3)

and

Gy(1) = Gp(—1), Gapii(1) = =Gy y(—1)
(A4)

Using Eq. (A3) and Eq. (6) from Eq. (A2) we
obtain

Go( 1, +1,) = Go(1,)Go(1,) + v§{G\(1,)G\(1,)
+viviG,(1,)Gy(1,)

+vivviG 3(1)Gs(1,) + ... (AS)
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