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Expressions describing the temperature dependence of the solid echo amplitude in the case of slow atomic and molecular
motions for arbitrary ratios of the motion correlation times 7 and intervals between the RF pulses 7 have been obtdined.
Comparison with the experimental data measured in polycristalline cyclohexane in temperature ranges of slow reorienta-
tion and diffusion motions demonstrates a good agreement with the theoretical consideration made and shows new possi-
bilities in measuring motion parameters using a simple solid echo experiment.

The study of slow atomic and molecular motions
ising the analysis of the NMR line shape g (w) or free
mduction decay G (f) is limited mainly by solids con-
taining well isolated two- and three-spin groups (H, O,
1),0. CH,, CHy. NHj etc.) [1]. This is due to the fact
‘hat the problem of the calculation of g(w) or G(¢) al-
ows in these cases an exact analvtical solution. In the
nore general case a theoretical consideration of g(w)
mnd G (1) is a complicated mathematical problem. Re-
ently, for its solution Lowe et al. [2-4] have suggest-
“d 1o use a method similar to the moment method of
van Vieck [3]. The principle of the method consists
n calculating the coetficients a,, in the time expansion
»{ the function G(r)

()= r§) (1/nY)a,tm . (1)

In the case of a stochastic Markov process describ-
ing the thermal motion of the magnetic nuclei this
:xpression can be written as [2—4.6]
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tere 7 is the correlation time of the motion consider-
cd, M4, My are the second and fourth moments of the
NMR line in the rigid lattice, AM, =M, ~ M, where
M, is the measured sccond moment of the motionally
narrowed NMR line (Tc‘l >M21/2). From (2) it follows
that for the determination of the coefficientsa and
a4 which contain the information about the motion it
is necessary to know the behaviour of G(r)at ¢ — 0.
However, the initial part of the FID cannot be mea-
sured usually because of the finite pulse length. the
presence of a “*dead™ time of the receiver. etc.

Several methods were suggested for removing this
“dead™ time of the pulse experiment. The simplest
method among them is the solid echo method in which
a spin echo in solids is formed by the two-pulse se-
quence 90°—7—90°9 [7,8]. It has been shown recent-
ly that for the Markov process the dependence of the
solid echo amplitude at 27 can be described as follows
(9]

V(2r) - V,(21)
= 1= 3(AMofr)T3 + 1AMy D) 4 L (3)

where V' (27) is the expression describing the decay of
the solid echo amplitude in the rigid lattice [8]. The ex-
pressions (2) and (3) describe correctly the behaviour
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of the FID and solid echo amplitude for times ¢ <.
In the present paper the calculation of the solid echo
amplitude is performed for an arbitrary ratio #/7_.
The same problem for the two-spin system was solved
earlier [10-13].

It is known [1] that the function G(¢) can be ex-
pressed in the case of a dipole—dipole interaction spin
system having space spin motion described by the
stochastic Markov process as

4

Gir)= exp(— [1-nce d}) ) 4)

0

where C'(7) is the autocorrelation function of the
local dipole fields on the resonant nuclei. 1 C(1)is
choser in the form 1]

C(7D=/1_lz + MM exp(-T1i7,.), (5)

then we get from (4)

G(n)= cxp(-.Ml:.Tf fexp(=t/T.) =1 +1/1.]
L (6)

It follows from (6) that when ¢/7. <1,

G(1)= (1 -—-21—!111213 +Zl—!(3M§)t4 + )

aM aM
187, 15, )
+(3! mrTa ) ™
[+

which is in good agreement with (2) obtained using
more strict initial conditions than (6). When ¢/7.> |
we have

G(1) = exp(~3 Myt?) exp(—AM, 7 1), (8)

which corresponds to the motionally narrowed NMR
line shape [1].

Using a method similar to the Abragam method
presented above we have obtained for V' (27) the follow-
ing expression

V(27) = exp (~4 f (r-1H)ee')de
0

+ f-T Qr-1)C(') dt’) . ©)
0
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Then for the autocorrelation function of the form ('
we find from (9)

F(2r)=exp {—AMzrg[l +27/1,

- [2 - exp(=7/7))21} . (I
In the slow motion region (r/7, < 1) we have from (
V(Rr) =1 - 3(AM, /1 )3 + 5(AaM,fr)rt + L

which agrees well with the expression (3). For rapid
motion (r/7.> 1)

I'(21) = exp{-2AMa7.7] . (1

The calculated dependences of the solid echo am
tude on the ratio 7/7_ are presented for some values
of AM:T: in fig. 1. It can be seen trom it that the
minimum of the temperature dependencé of 1°(27)
is always at 7/7 . = 1.8937. Therefore the correlation
time of the studied motion 7, = 0.3287 can be obta
ed with good accuracy from the temperature depen-
dence of the solid echo amplitude. The minimum vu
of this dependence is determined by both the motio
type and the parameter of the pulse sequence

V(2r) = exp(—0.38 AM, 7). (1

The measurements performed in polycristalline cycl
hexane confirm well the obtained expressions. Fig.
shows a strong decrease of the solid echo amplitude
in the slow motion regions-of the reorientation of

cyclohexane molecules about their threefold axes (at
temperatures below the phase transition 7, = 186 K):
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Fig. 1. The dependences of the solid echo amplitude V (27)
on In{r/r¢) for some values of y = AM;T2 calculated using
eq. (10).
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Fig. 2. The temperature dependences of the solid echo ampli-
tudes in polycristalline cyclohexanc for some values of the in-
terval 7 between RF pulses of the pulse sequence 90° —7—
90%0°- The length of the 90° pulses was 2.0 s, the Larmor
frequency was 30 MHz. The broken line shows the tempera-
ture dependence of the FID amplitude in polycristalline
Ca(OH); which is of rigid-lattice type in the whole measured
temperature range.

diffusion (at T> T.) [14—17]. The experimental val-
ucs of the minimal ¥V (27) for both studied motions
agree well with the caleulated ones. So. in the low
temperature phase the ¥(2r) values obtained using
(13) and AM, = 19X 10~ T [14.18] are equal to
0.58,0.46.0.21 and 0.12. for7=10. 12. 17 and
20 us. respectively. The corresponding experimental
values are 0.58 £0.02.0.50£0.02.0.29 £0.03 and
0.18 £0.03.

The correlation times of the cyclohexane molecule
motions in two solid phases. obtained using the rela-
tion between 7 and 7. 7/7, = 1.8937. at temperatures
of the observed V' (27r) minima (164 1. 162.5 %1,
157+1,154+1Kand 195£1,200 1,206 £ 1,
211 + 1 K) are described well by the Arrhenius ex-
pression 7. = 7oexp(E,/RT). The parameters of the
cyclohexane diffusion motion in the plastic cubic
phase at T> 186 K calculated in such a way £, =9.5
+0.2 kcal/mole, g = (3.3 X 2.0) X 1013 s are in very
good agreement with the known data of the previous
studies of this phase made by the NMR pulse methods
[15—17]. The parameters of the reorientation motion
of the cyclohexane molecule around its threefold axis
in the low-temperature monoclinic phase [14,18] are
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5.4+ 0.5 kcal/mole, 7y = (5.0£2.0)X 10713 5. It
should be noted that it is the first time that the param-
eters of this reorientation motion are obtained. Previous
attempts to measure the motion parameters in the low-
temperature phase using the Ty, and T, relaxation
times were not succesfull due to the high local dipole
field in this phase of cyclohexane which is compar-
able with the usually used RF field strengths of the
spin-locking and MW-4 multipulse sequences [16,17].

Thus the obtained results demonstrate clearly that
the study of the solid echoes in the slow motion region
can give accurate information about the motions in
solids within a wide range of dipole—dipole interac-
tions.
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