Wykład 12

Właściwości optyczne kryształów - przedłużenie

Przykład 12.1. Znajdziemy kąt między wektorem falowym \vec{k}_0 i promieniem \vec{s} fali świetlnej rozchodzącej się w krysztale LiNbO₃ (grupa punktowa – 3m; główne wartości tensora nieprzenikalności dielektrycznej są równe: $\eta_1 = \eta_2 = 0,023$; $\eta_3 = 0,03$) w kierunku, który tworzy kąt 45^o z osią 3-krotną.

Kryształ LiNbO₃ należy do układu trygonalnego, a więc jest to kryształ optycznie jednoosiowy. W układzie głównych osi tensora η_{ij} wektor falowy \vec{k}_0 ma składowe ($\sin \theta$, 0, $\cos \theta$) (rys.12.1). Rozważmy układ współrzędnych Ox'_1 , $Ox'_2 = Ox_2$, Ox'_3 w którym oś Ox'_3 pokrywa się z kierunkiem wektora \vec{k}_0 (rys.12.1).

Rys.12.1. Przekrój indykatrysy optycznej płaszczyzną x_1Ox_3

Macierz $\alpha_{ii'}$, określająca przejście od jednego układu współrzędnych do drugiego ma postać:

$$\left[\boldsymbol{\alpha}_{ij'}\right] = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix}.$$
 (12.1)

Korzystając z reguł przekształcenia składowych tensora drugiego rzędu, znajdujemy, że w układzie współrzędnych Ox_1', Ox_2', Ox_3' tensor η_{ij}' ma postać

$$\left[\eta_{ij}^{\prime}\right] = \begin{bmatrix} \eta_1 \cos^2 \theta + \eta_3 \sin^2 \theta & 0 & \eta_1 \sin \theta \cos \theta - \eta_3 \sin \theta \cos \theta \\ 0 & \eta_1 & 0 \\ \eta_1 \sin \theta \cos \theta - \eta_3 \sin \theta \cos \theta & 0 & \eta_1 \sin^2 \theta + \eta_3 \cos^2 \theta \end{bmatrix}.$$
 (12.2)

Kierunki wektorów $\vec{D}^{(1)}$ i $\vec{D}^{(2)}$ znajdziemy z rozwiązania układu równań

$$D_1^{(1),(2)}(\eta_{11}^{\prime} - \frac{1}{n_{1,2}^2}) + D_2^{(1),(2)}\eta_{12}^{\prime} = 0 , \qquad (12.3a)$$

$$D_1^{(1),(2)} \eta_{12}' + D_2^{(1),(2)} (\eta_{22}' - \frac{1}{n_{1,2}^2}) = 0 , \qquad (12.3b)$$

gdzie

$$n_1^{-2} = \frac{1}{2} [(\eta_{11}' + \eta_{22}') + \sqrt{(\eta_{11}' - \eta_{22}')^2 + (2\eta_{12}')^2}] = \eta_{11}', \qquad (12.4a)$$

$$n_2^{-2} = \frac{1}{2} [(\eta_{11}' + \eta_{22}') - \sqrt{(\eta_{11}' - \eta_{22}')^2 + (2\eta_{12}')^2}] = \eta_{22}' = \eta_1 .$$
(12.4b)

Po podstawieniu (12.4) do układu równań (12.3) otrzymujemy, że wektory $\vec{D}^{(1)}$ jest skierowany wzdłuż osi Ox_1^{\prime} ($\vec{D}^{(1)} = (D_1^{(1)}, 0, 0)$). Natomiast wektor $\vec{D}^{(2)}$ jest skierowany wzdłuż osi $Ox_2^{\prime} = Ox_2$ ($\vec{D}^{(2)} = (0, D_2^{(2)}, 0)$). Wektory $\vec{E}^{(1)}$ i $\vec{E}^{(2)}$ znajdziemy korzystając ze wzoru

$$E_i = \eta_0 \eta_{ij} D_j$$

Skąd dla składowych wektora $\vec{E}^{(1)}$ mamy

$$E_{1}^{(1)} = \eta_{0}(\eta_{1}\cos^{2}\theta + \eta_{3}\sin^{2}\theta) \cdot D_{1}^{(1)},$$

$$E_{2}^{(1)} = 0,$$

$$E_{3}^{(1)} = \eta_{0}(\eta_{1} - \eta_{3})\sin\theta\cos\theta \cdot D_{1}^{(1)}.$$
(12.5)

Kąt między wektorami \vec{k}_0 i \vec{s} znajdujemy stosując wzór:

$$\cos \alpha = \frac{\vec{E}^{(1)} \cdot \vec{D}^{(1)}}{\left| \vec{E}^{(1)} \right| \cdot \left| \vec{D}^{(1)} \right|} = \frac{\eta_1 \cos^2 \theta + \eta_3 \sin^2 \theta}{\sqrt{(\eta_1 \cos^2 \theta + \eta_3 \sin^2 \theta)^2 + (\eta_1 - \eta_3)^2 \sin^2 \theta \cos^2 \theta}} ,$$

skąd przy $\theta = 45^{\circ}$ otrzymujemy

$$\cos\alpha = \frac{1}{\sqrt{2}} \frac{\eta_1 + \eta_3}{\sqrt{\eta_1^2 + \eta_3^2}} = 0.9914,$$

$$\alpha = 7^{\circ}30^{\prime}$$

Wektor $\vec{E}^{(2)}$ określa polaryzację fali zwyczajnej i jest równoległy do wektora $\vec{D}^{(2)}$. Składowe wektora $\vec{E}^{(2)}$ są równe $\vec{E}^{(2)} = (0, \eta_0 \eta_1 D_2^{(2)}, 0)$, a więc dla fali zwyczajnej $\vec{k}_0 \parallel \vec{s}$ i $\beta = 0$.

Przykład 12.2. Przy przejściu światła przez kryształ optycznie anizotropowy zachodzi nie tylko podwójne załamanie światła, a również polaryzacja powstałych wiązek świetlnych. Zjawisko to stosuje się w urządzeniach służących do wytwarzania (**polaryzatory**) oraz do badania (**analizatory**) światła spolaryzowanego. Najstarszym z tych urządzeń jest pryzmat Nicola, nazywany **nikolem**. Pryzmat Nicola zawiera dwie sklejone części z kryształu kalcytu tak, aby promień zwyczajny został odbity całkowicie od powierzchni sklejenia, a promień nadzwyczajny przechodził przez nią bez zmiany kierunku. Promień nadzwyczajny wychodzący z nikola jest spolaryzowany w kierunku wyznaczonym przez położenie przekroju głównego kryształu, czyli w płaszczyźnie przekroju zawierającego oś optyczną.

Wyprowadźmy wzór na natężenie światła, przechodzącego przez układ: polaryzator – kryształ – analizator (rys.12.2), zakładając, ze płaszczyzny drgań w analizatorze i polaryzatorze tworzą kąt γ (płaszczyzny A - A i P - P na rys.12.2), a płaszczyzny drgań (płaszczyzny I i II na rys.12.2) w krysztale tworzą kąty α i β z odpowiednimi płaszczyznami polaryzatora i analizatora.

Jeżeli oznaczmy przez n_1 i n_2 współczynniki załamania światła spolaryzowanego odpowiednio w kierunkach *I* i *II*, a przez *d* oznaczmy grubość płytki krystalicznej, to różnica faz dwóch fał (fali spolaryzowanej wzdłuż kierunku *I* i fali spolaryzowanej wzdłuż kierunku *II*) wynosi

$$\varphi = \frac{2\pi}{\lambda} d(n_1 - n_2) \quad . \tag{12.6}$$

Rys.12.2. Przekrój indykatrysy optycznej płaszczyzną powierzchni płytki

Niech I_0 jest natężenie wiązki światła wychodzącej z polaryzatora. Amplitudę tej wiązki określa punkt P na rys.11.2 ($OP = \sqrt{I_0}$). Z rys.12.2 wynika, że amplitudy fal spolaryzowanych w krysztale wzdłuż kierunków I i II są równe: $OM_1 = \sqrt{I_0} \cdot \cos \alpha$, $OM_2 = \sqrt{I_0} \cdot \sin \alpha$. Natężenie wiązki światła wychodzącej z analizatora określa wzór

$$I = (OA_1)^2 + (OA_2)^2 - 2(OA_1)(OA_2)\cos\varphi$$

Ponieważ $OA_1 = \sqrt{I_0} \cdot \cos \alpha \cdot \cos \beta$ i $OA_2 = \sqrt{I_0} \cdot \sin \alpha \cdot \sin \beta$, to na natężenie światła przechodzącego przez układ: polaryzator – kryształ – analizator otrzymujemy następujący wzór

$$I = I_0 \cdot \cos^2 \gamma + I_0 \cdot \sin 2\alpha \cdot \sin 2\beta \cdot \sin^2(\varphi/2).$$
(12.7)

Tu uwzględniliśmy, że $\alpha + \beta + \gamma = 180^{\circ}$.

Ze wzoru (12.7) wynika, że jeżeli nikole są skrzyżowane ($\gamma = 90^{\circ}$, $\alpha + \beta = 90^{\circ}$), to

$$I = I_0 \cdot \sin^2 2\alpha \cdot \sin^2(\varphi/2)$$

= $\frac{1}{4} I_0 (1 - \cos 4\alpha) \cdot (1 - \cos \varphi)$ (12.8)

A zatem maksymalne natężenie światła będzie miała płytka dla której różnica faz wynosi $\varphi = \pi$. Przy obrocie kryształu dookoła osi normalnej do płytki krystalicznej będziemy cztery razy obserwowali całkowite wygaszanie światła (przy $\alpha = 0, \pi/2, \pi, 3\pi/2$) i całkowite przepuszczanie światła (przy $\alpha = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4$).

Jeżeli nikole są zorientowane w taki sposób, że ($\gamma = 0^{\circ}$, $\alpha + \beta = 180^{\circ}$), to

$$I = I_0 \cdot [1 - \sin^2 2\alpha \cdot \sin^2(\varphi/2)].$$
 (12.9)

Ze wzoru (12.9) wynika, że przy obrocie kryształu dookoła osi normalnej do płytki krystalicznej również będziemy cztery razy obserwowali całkowite wygaszanie i przepuszczanie światła, ale w porządku odwrotnym: przepuszczanie światła będziemy obserwowali przy $\alpha = 0, \pi/2, \pi, 3\pi/2$, a całkowite wygaszanie światła będziemy obserwowali przy $\alpha = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4$.

Zjawisko elastooptyczne

Zmiana optycznych właściwości kryształu pod wpływem działania na kryształ naprężeń nosi nazwę **zjawiska elastooptycznego albo piezooptycznego**. Optyczne właściwości kryształu określa elipsoida współczynników załamania światła czyli tensor nieprzenikalności dielektrycznej η_{ij} . Pod wpływem zewnętrznych naprężeń zachodzi zmiana składowych tensora η_{ij} . W przypadku małych zmian kształtu, wymiarów oraz orientacji elipsoidy współczynników załamania światła te zmiany możemy opisać równaniem

$$\Delta \eta_{ij} = \eta_{ij}^0 - \eta_{ij} \quad . \tag{12.10}$$

Tu η_{ij}^0 jest tensor nieprzenikalności dielektrycznej nie deformowanego kryształu, a η_{ij} - tensor nieprzenikalności dielektrycznej kryształu deformowanego.

Wielkości $\Delta \eta_{ij}$ są w ogóle niewiadomymi funkcjami składowych tensora naprężeń t_{kl} . Jednak w przypadku niewielkich zmian tensora η_{ij} , zależności $\Delta \eta_{ij}$ od t_{kl} z dobrym przybliżeniem (przybliżenie liniowe) możemy opisać wzorem

$$\Delta \eta_{ij} = \pi_{ijkl} \cdot t_{kl} \quad (12.11)$$

Współczynniki π_{ijkl} , które tworzą składowe tensora czwartego rzędu, nazywamy współczynnikami piezooptycznymi.

Ponieważ składowe tensora naprężenia t_{kl} są związane ze składowymi tensora deformacji r_{ij} prawem Hooke'a ($t_{ij} = c_{ijkl} \cdot r_{kl}$), zmiany tensora dielektrycznej nieprzenikalności możemy wyrazić również przez składowe tensora deformacji r_{ij}

$$\Delta \eta_{ij} = p_{ijkl} \cdot r_{kl} \quad . \tag{12.12}$$

Tu wielkości $p_{ijkl} = \pi_{ijmn} \cdot c_{mnkl}$ są składowymi tensora czwartego rzędu i noszą nazwę współczynników elastooptycznych.

Korzystając z reguł macierzowego zapisu składowych tensora wzory (12.11) i (12.12) możemy zapisać w postaci

$$\Delta \eta_m = \pi_{mn} \cdot t_n \quad , \tag{12.13}$$

$$\Delta \eta_m = p_{mn} \cdot r_n \ . \tag{12.14}$$

Tensory π_{ijkl} i p_{ijkl} są tensorami materii, a zatem podlegają ograniczeniom narzucanym zasadą Neumanna.

W praktyce najczęstszej wykorzystuje się efekt elastooptyczny podłużny i efekt elastooptyczny poprzeczny. W przypadku efektu elastooptycznego podłużnego kierunek działania naprężenia ściskającego płytkę krystaliczną pokrywa się z kierunkiem promienia fali świetlnej. Dla efektu elastooptycznego poprzecznego te kierunki są wzajemnie prostopadłe.

Przykład 12.3. Dla kryształów należących do układu regularnego elipsoida współczynników załamania jest kulą, a zatem zjawisko dwójłomności światła w kryształach układu regularnego nie obserwuje się. Rozważmy poprzeczny efekt elastooptyczny w kryształach klasy *m3m* w przypadku, gdy kryształ został ściśnięty wzdłuż osi symetrii 4-krotnej.

Wybierzmy osi współrzędnych Ox_1, Ox_2, Ox_3 wzdłuż trzech wzajemnie prostopadłych 4-krotnych osi symetrii i niech kryształ został ściśnięty wzdłuż osi Ox_3 . Wtedy tensor naprężenia ma jedną niezerową składową $t_3 \equiv t$. Zgodnie ze wzorem (12.13) to naprężenie wywołuje następujące zmiany składowych tensora nieprzenikalności dielektrycznej

$$\Delta \eta_m = \pi_{m3} \cdot t_3 \ . \tag{12.15}$$

W kryształach klasy m3m tensor współczynników elastooptycznych π_{mn} ma postać

$$[\pi_{mn}] = \begin{bmatrix} \pi_{11} & \pi_{12} & \pi_{12} & 0 & 0 & 0 \\ \pi_{12} & \pi_{11} & \pi_{12} & 0 & 0 & 0 \\ \pi_{12} & \pi_{12} & \pi_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & \pi_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \pi_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \pi_{44} \end{bmatrix} .$$
 (12.16)

A zatem ze wzoru (12.15) mamy

$$\Delta \eta_1 = \Delta \eta_2 = \pi_{12} \cdot t , \quad \Delta \eta_3 = \pi_{11} \cdot t , \quad \Delta \eta_4 = \Delta \eta_5 = \Delta \eta_6 = 0 . \quad (12.17)$$

Biorąc pod uwagę (12.17), otrzymujemy równanie dla indykatrysy optycznej

$$(\eta_0 + \Delta \eta_1) x_1^2 + (\eta_0 + \Delta \eta_2) x_2^2 + (\eta_0 + \Delta \eta_3) x_3^2$$

= $(\eta_0 + \pi_{12} \cdot t) \cdot (x_1^2 + x_2^2) + (\eta_0 + \pi_{11} \cdot t) x_3^2 = 1$, (12.18)

,

gdzie $\eta_0 = 1/n_o^2$ i n_o - współczynnik załamania światła do deformacji kryształu.

Ze wzoru (12.18) wynika, że indykatrysa kryształu regularnego po ściśnięciu kryształu wzdłuż osi symetrii 4-krotnej przyjmuje kształt elipsoidy obrotowej. Główne współczynniki załamania światła są równe

$$n_{1} = n_{2} = \frac{1}{\sqrt{\eta_{0} + \Delta \eta_{1}}} = \frac{1}{\sqrt{\eta_{0}}} \left(1 + \frac{\Delta \eta_{1}}{\eta_{0}}\right)^{-1/2}$$
$$\approx \frac{1}{\sqrt{\eta_{0}}} \left(1 - \frac{1}{2} \frac{\Delta \eta_{1}}{\eta_{0}}\right) = n_{o} - \frac{1}{2} n_{o}^{3} \pi_{12} t$$

$$n_{3} = \frac{1}{\sqrt{\eta_{0} + \Delta \eta_{3}}} = \frac{1}{\sqrt{\eta_{0}}} \left(1 + \frac{\Delta \eta_{3}}{\eta_{0}}\right)^{-1/2}$$
$$\approx \frac{1}{\sqrt{\eta_{0}}} \left(1 - \frac{1}{2} \frac{\Delta \eta_{3}}{\eta_{0}}\right) = n_{o} - \frac{1}{2} n_{o}^{3} \pi_{11} t$$

Wielkość dwójłomności światła rozchodzącego się wzdłuż kierunku prostopadłego do osi Ox_3 określa wzór

$$\Delta n = n_3 - n_1 = -\frac{1}{2} n_o^3 (\pi_{11} - \pi_{12}) \cdot t \, .$$

Przykład 12.4. Rozważmy efekt elastooptyczny w kryształach klasy *m*3*m* w przypadku, gdy kryształ został ściśnięty wzdłuż osi symetrii 3 - krotnej.

W danym układzie krystałicznym tensor naprężenia jednoosiowego działającego wzdłuż osi 3 – krotnej, która pokrywa się z kierunkiem [111], ma postać

$$[t_n] = \frac{1}{3} \begin{bmatrix} t & t & t \\ t & t & t \\ t & t & t \end{bmatrix}.$$
 (12.19)

Zgodnie z (12.13) i (12.16) zmiany składowych tensora nieprzenikalności dielektrycznej wynoszą

$$\Delta \eta_1 = \Delta \eta_2 = \Delta \eta_3 = \frac{1}{3} (\pi_{11} + 2\pi_{12}) \cdot t , \quad \Delta \eta_4 = \Delta \eta_5 = \Delta \eta_6 = \frac{1}{3} \pi_{44} \cdot t . \quad (12.20)$$

Biorąc pod uwagę (12.20), otrzymujemy równanie dla indykatrysy optycznej

$$a \cdot (x_1^2 + x_2^2 + x_3^2) + 2b \cdot (x_1 x_2 + x_1 x_3 + x_2 x_3) = 1 , \qquad (12.21)$$

gdzie

$$a = \eta_0 + \frac{1}{3}(\pi_{11} + 2\pi_{12}) \cdot t$$
, $2b = \frac{1}{3}\pi_{44} \cdot t$.

Ze wzoru (12.21) wynika, że dla odkształconego kryształu układ krystałofizyczny nie jest układem osi głównych indykatrysy optycznej. Znajdziemy główny układ osi indykatrysy optycznej.

Z równania

$$\begin{vmatrix} a - \eta & b & b \\ b & a - \eta & b \\ b & b & a - \eta \end{vmatrix} = (a - b - \eta) \cdot [(a - \eta)^2 + b \cdot (a - \eta) - 2b^2] = 0$$

otrzymujemy

$$\eta_1 = \eta_2 = a - b$$
, $\eta_3 = a + 2b$. (12.22)

Ze wzoru (12.22) wynika, że optyczna indykatrysa kryształu odkształconego jest elipsoidą obrotową ($\eta_1 = \eta_2 \neq \eta_3$). A więc deformacja kryształu regularnego wzdłuż osi 3 – krotnej powoduje, że kryształ będzie optycznie jednoosiowy. Kierunek głównej osi indykatrysy optycznej odpowiadającej η_3 znajdziemy z rozwiązania układu równań

$$(a - \eta_3) \cdot c_1 + b \cdot (c_2 + c_3) = -3b \cdot c_1 + b \cdot (c_1 + c_2 + c_3) = 0 ,$$

$$(a - \eta_3) \cdot c_2 + b \cdot (c_1 + c_3) = -3b \cdot c_2 + b \cdot (c_1 + c_2 + c_3) = 0 ,$$

$$(a - \eta_3) \cdot c_3 + b \cdot (c_2 + c_3) = -3b \cdot c_3 + b \cdot (c_1 + c_2 + c_3) = 0 ,$$

$$c_1^2 + c_2^2 + c_3^2 = 1 .$$

Rozwiązanie tych równań ma postać

$$c_1 = c_2 = c_3 = \frac{1}{\sqrt{3}}$$
.

A zatem kierunek osi optycznej deformowanego kryształu, pokrywa się z kierunkiem [111], czyli z kierunkiem działania naprężenia jednoosiowego.

Równanie indykatrysy optycznej deformowanego kryształu w układzie głównych osi tensora nieprzenikalności ma postać

$$[\eta_{0} + \frac{1}{3}(\pi_{11} + 2\pi_{12} - \frac{1}{2}\pi_{44}) \cdot t] \cdot (x_{1'}^{2} + x_{2'}^{2}) + [\eta_{0} + \frac{1}{3}(\pi_{11} + 2\pi_{12} + \pi_{44}) \cdot t] x_{3'}^{2} = 1$$
(12.23)

Ze wzoru (12.23) wynika, że główne współczynniki załamania światła są równe

$$n_{1} = n_{2} = \frac{1}{\sqrt{\eta_{0} + \Delta \eta_{1}}} = \frac{1}{\sqrt{\eta_{0}}} (1 + \frac{\Delta \eta_{1}}{\eta_{0}})^{-1/2}$$
$$\approx \frac{1}{\sqrt{\eta_{0}}} (1 - \frac{1}{2} \frac{\Delta \eta_{1}}{\eta_{0}}) = n_{o} - \frac{1}{6} n_{o}^{3} (\pi_{11} + 2\pi_{12} - \frac{1}{2} \pi_{44}) \cdot t$$

$$n_{3} = \frac{1}{\sqrt{\eta_{0} + \Delta \eta_{3}}} = \frac{1}{\sqrt{\eta_{0}}} \left(1 + \frac{\Delta \eta_{3}}{\eta_{0}}\right)^{-1/2}$$
$$\approx \frac{1}{\sqrt{\eta_{0}}} \left(1 - \frac{1}{2} \frac{\Delta \eta_{3}}{\eta_{0}}\right) = n_{o} - \frac{1}{6} n_{o}^{3} (\pi_{11} + 2\pi_{12} + \pi_{44}) \cdot t$$

Wielkość dwójłomności światła rozchodzącego się wzdłuż kierunku prostopadłego do osi Ox_3 określa wzór

$$\Delta n = n_3 - n_1 = -\frac{1}{4} n_o^3 \pi_{44} \cdot t \; .$$