Współrzędne normalne drgań kryształu

W przybliżeniu harmonicznym drgania sieci krystalicznej tworzą fale płaskie, których częstość jest związana z wektorem kwazifalowym \vec{k} zależnością dyspersyjną $\omega(\vec{k})$. Oczywiście drgania harmoniczne, określone funkcjami wychyleń atomów $\vec{u}_{s\bar{i}}(t)$, nie opisują ogólnego ruchu atomów w krysztale. Dla tego, żeby opisać ogólny ruch atomów w krysztale wprowadźmy zamiast zmiennych $\vec{u}_{s\bar{i}}(t) \equiv \vec{u}(\vec{n},t)$ nowe uogólnione zmienne $\vec{Q}_k(t)$, które noszą nazwę *współrzędnych normalnych* drgań sieci:

$$\vec{u}(\vec{n},t) = \frac{1}{\sqrt{m_s N}} \sum_{\vec{k}} \vec{Q}_{\vec{k}}(t) \cdot e^{i\vec{k}\cdot\vec{r}(\vec{n})} .$$
(8.1)

Tu wektor $\vec{r}(\vec{n}) \equiv \vec{r}_{s\vec{l}}$ określa położenie równowagi atomu *s* w \vec{l} - tej komórce elementarnej. Dla uproszczenia rozważmy znów łańcuch składający a jednakowych atomów. Wtedy przekształcenie (8.1) przyjmuje postać

$$u_n(t) = \frac{1}{\sqrt{mN}} \sum_k Q_k(t) \cdot e^{ika \cdot n} \quad .$$
(8.2)

Tu N - liczba atomów.

Ponieważ wychylenia atomów są opisywane za pomocą funkcji rzeczywistych, $u_n(t) \equiv u_n^*(t)$, współrzędne normalne $Q_k(t)$ powinny spełniać warunek

$$Q_{-k}(t) = Q_{k}^{*}(t)$$
 (8.3)

Biorąc pod uwagę (8.2) otrzymujemy następujący wzór na energię kinetyczną łańcucha

$$T = \frac{m}{2} \sum_{n} \dot{u}_{n}^{2} = \frac{1}{2N} \sum_{n} \sum_{k,k'} \dot{Q}_{k}(t) \dot{Q}_{k'}(t) \cdot e^{i(k+k')an} .$$
(8.4)

Rozważmy najpierw w (8.4) sumowanie względem wskaźnika n. Ponieważ

$$\frac{1}{N} \sum_{n} e^{iqan} = \frac{1}{N} e^{iqa} \frac{1 - e^{iqaN}}{1 - e^{iqa}} ,$$

uwzględniając, że $k = 2\pi m/Na$ i $k' = 2\pi m'/Na$, znajdujemy:

$$q = k + k' \neq 0 \qquad e^{iqa} \frac{1 - e^{iqaN}}{1 - e^{iqa}} = e^{i2\pi \frac{(m + m')}{N}} \frac{1 - e^{i2\pi (m + m')}}{1 - e^{i2\pi \frac{(m + m')}{N}}} = 0 ,$$
$$q = k + k' = 0 \qquad e^{iqa} \frac{1 - e^{iqaN}}{1 - e^{iqa}} = \frac{0}{0} ,$$

Korzystając z reguły de l'Hospitala dla q = k + k' = 0 mamy

$$\frac{1}{N}\lim_{q\to 0}\frac{\frac{d}{dq}(1-e^{iqaN})}{\frac{d}{dq}(1-e^{iqa})} = \frac{1}{N}\frac{-iaN}{-ia} = 1.$$

Z prowadzonej analizy wynika, że w (8.4) będą nie zerowe tylko wyrazy dla których k' = -k. Ostatecznie otrzymujemy

$$T = \frac{1}{2} \sum_{k} \dot{Q}_{k}(t) \dot{Q}_{-k}(t) = \frac{1}{2} \sum_{k} \frac{dQ_{k}(t)}{dt} \frac{dQ_{k}^{*}(t)}{dt} .$$
(8.5)

Tu skorzystaliśmy z własności współrzędnych normalnych (8.3).

Przekształcimy teraz wyrażenie na energię potencjalną drgań harmonicznych łańcucha, biorąc pod uwagę wzór (8.2)

$$U = \frac{f}{2} \sum_{n} (u_{n} - u_{n-1})^{2}$$

= $\frac{f}{2mN} \cdot \sum_{k,k'} Q_{k}(t) Q_{k'}(t) \sum_{n} \left[e^{i(k+k')an} - 2e^{-iak'} e^{i(k+k')an} + e^{i(k+k')a(n-1)} \right]$ (8.6)

Wykonując sumowanie względem wskaźnika n otrzymujemy

$$U = \frac{f}{m} \sum_{k} Q_{k}(t)Q_{-k}(t)(1 - e^{iak}) .$$
(8.7)

Uwzględniając wzór (8.3), zapiszmy (8.7) w równoważnej postaci

$$U = \frac{f}{2m} \cdot \sum_{k} Q_{k}(t)Q_{k}^{*}(t)(2 - e^{iak} - e^{-iak}) .$$
(8.8)

Dla łańcuchu jednoatomowego zależność dyspersyjna drgań harmonicznych ma postać

$$\omega^{2}(k) = \frac{2f}{m} [1 - \cos(ak)] = \frac{f}{m} (2 - e^{iak} - e^{-iak}) .$$
(8.9)

Biorąc pod uwagę (8.9) ostatecznie znajdujemy

$$U = \frac{1}{2} \cdot \sum_{k} \omega^{2}(k) \cdot Q_{k}(t)Q_{k}^{*}(t) . \qquad (8.10)$$

Korzystając ze wzorów (8.5) oraz (8.10) dla funkcji Lagrange'a mamy

$$L = T - U = \frac{1}{2} \sum_{k} \left[\dot{Q}_{k}(t) \dot{Q}_{k}^{*} - \omega^{2}(k) \cdot Q_{k}(t) Q_{k}^{*}(t) \right] .$$
(8.11)

Wykazaliśmy, więc, że funkcję Lagrange'a drgań harmonicznych sieci krystalicznej możemy przedstawić jako sumę składników odnoszących się do każdej ze współrzędnych normalnych.

Ze wzoru (8.11) łatwo otrzymać równania ruchu dla każdej uogólnionej współrzędnej

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{Q}_{k}}\right) - \frac{\partial L}{\partial Q_{k}} = \frac{d^{2}Q_{k}}{dt^{2}} + \omega^{2}(k) \cdot Q_{k} = 0 \quad .$$
(8.12)

Równanie (8.12) jest równaniem oscylatora harmonicznego o częstości $\omega(k)$.

Wprowadźmy z kolei pęd uogólniony P_k sprężony do współrzędnej normalnej Q_k

$$P_k = \frac{\partial L}{\partial \dot{Q}_k} = \dot{Q}_k^* \quad . \tag{8.13}$$

Biorąc pod uwagę (8.13), funkcję Hamiltona możemy zapisać następująco:

$$H = T + U = \frac{1}{2} \sum_{k} \left[\left| P_{k} \right|^{2} + \omega^{2}(k) \cdot \left| Q_{k} \right|^{2} \right] .$$
(8.14)

Widzimy, że funkcję Hamiltona także możemy przedstawić w postaci funkcji Hamiltona niezależnych oscylatorów harmonicznych z masami równymi jedności i częstościami $\omega(k)$.

We wzorach (8.11) i (8.14) uogólnione współrzędne Q_k i uogólnione pędy P_k są wielkościami zespolonymi. Zazwyczaj funkcje Hamiltona i Lagrange'a zapisywane są za pomocą rzeczywistych uogólnionych współrzędnych i pędów. Przejście do rzeczywistych funkcji Lagrange'a i Hamiltona łatwo wykonać za pomocą następującego przekształcenia

$$Q_{k} = \frac{1}{2} \left\{ x_{k} + x_{-k} + \frac{i}{\omega_{k}} (p_{k} - p_{-k}) \right\} , \qquad (8.15a)$$

$$P_{k} = \frac{1}{2} \{ p_{k} + p_{-k} - i\omega_{k} (x_{k} - x_{-k}) \}, \qquad (8.15b)$$

gdzie x_k i p_k są rzeczywistymi współrzędnymi normalnymi i sprężonymi z nimi pędami uogólnionymi $p_k = dx_k/dt$.

Ze wzorów (8.15) znajdujemy

$$\left|Q_{k}\right|^{2} = \frac{1}{4} \left\{ x_{k}^{2} + 2x_{k}x_{-k} + x_{-k}^{2} + \frac{1}{\omega_{k}^{2}} (p_{k}^{2} - 2p_{k}p_{-k} + p_{-k}^{2}) \right\}, \qquad (8.16a)$$

$$\left|P_{k}\right|^{2} = \frac{1}{4} \left\{ p_{k}^{2} + 2p_{k}p_{-k} + p_{-k}^{2} + \omega_{k}^{2} (x_{k}^{2} - 2x_{k}x_{-k} + x_{-k}^{2}) \right\}.$$
 (8.16b)

Po wstawieniu wzorów (8.15) do (8.14) i biorąc pod uwagę, że $\omega_k = \omega_{-k}$ otrzymujemy

$$H = \frac{1}{2} \sum_{k} \left[\left| P_{k} \right|^{2} + \omega^{2}(k) \cdot \left| Q_{k} \right|^{2} \right]$$
$$= \frac{1}{2} \sum_{k} \frac{1}{2} \left\{ p_{k}^{2} + p_{-k}^{2} + \omega_{k}^{2}(x_{k}^{2} + x_{-k}^{2}) \right\} = \frac{1}{2} \sum_{k} \left(p_{k}^{2} + \omega_{k}^{2} \cdot x_{k}^{2} \right) . \tag{8.17}$$

Wykazaliśmy więc, że energia drgań sieci jednowymiarowej jest sumą energii N niezależnych oscylatorów harmonicznych o częstotliwościach ω_k . Każdy z oscylatorów reprezentuje drgania całego kryształu, a nie pojedynczego atomu. Drgania te noszą nazwę *drgań normalnych*.

W przypadku drgań kryształu trójwymiarowego funkcja Hamiltona w przybliżeniu harmonicznym ma postać

$$H = \frac{1}{2} \sum_{\vec{k},a} \left[p_a^2(\vec{k}) + \omega_a^2(\vec{k}) \cdot x_a^2(\vec{k}) \right] .$$
(8.18)

Tu wskaźnik α określa odpowiednią gałąź drgań sieci krystalicznej, a $\omega_{\alpha}(\vec{k})$ jest zależnością dyspersyjną α gałęzi.

Kwantowanie drgań sieci krystalicznej

Dotychczas drgania sieci krystalicznej rozważaliśmy korzystając z mechaniki klasycznej. Istnieją jednak problemy, w których rozważanie kwantowe staje się niezbędne. Należą do tych problemów zagadnienia natury oporu elektrycznego, nadprzewodnictwa, zjawiska optyczne i inne. Przejście do opisu kwantowego drgań sieci krystalicznej zaczniemy od funkcji Hamiltona

$$H = \frac{1}{2} \sum_{k} \left(p_{k}^{2} + \omega_{k}^{2} x_{k}^{2} \right), \qquad (8.19)$$

zapisaną za pomocą kanoniczne sprzężonych współrzędnych uogólnionych x_k i pędów uogólnionych p_k . Zgodnie z podstawową zasadą mechaniki kwantowej funkcję Hamiltona należy traktować jako operator, w którym zmienne x_k i p_k należy zamienić na operatory spełniające następujące reguły komutacyjne:

$$[\hat{x}_{k}, \hat{p}_{k'}] = i\hbar \delta_{kk'},$$
 (8.20a)

$$[\hat{x}_{k}, \hat{x}_{k'}] = [\hat{p}_{k}, \hat{p}_{k'}] = 0$$
 (8.20b)

Zamiast operatorów \hat{x}_k i \hat{p}_k wprowadźmy nowe operatory \hat{a}_k i \hat{a}_k^+

$$\hat{x}_{k} = \sqrt{\frac{\hbar}{2\omega_{k}}} (\hat{a}_{k} + \hat{a}_{k}^{*}) , \qquad \hat{p}_{k} = i\sqrt{\frac{\hbar\omega_{k}}{2}} (\hat{a}_{k}^{*} - \hat{a}_{k}) .$$
 (8.21)

Sens wprowadzenia tych nowych operatorów będzie jasny późnej.

Korzystając z (8.21) przekształcimy hamiltonian (8.19)

$$\hat{H} = \frac{1}{2} \sum_{k} (\hat{p}_{k}^{2} + \omega_{k}^{2} \hat{x}_{k}^{2}) = \frac{1}{2} \sum_{k} \hbar \omega_{k} (\hat{a}_{k} \hat{a}_{k}^{+} + \hat{a}_{k}^{+} \hat{a}_{k}).$$
(8.22)

Biorąc pod uwagę reguły (8.20) łatwo udowodnić, następujące reguły komutacyjne dla nowych operatorów \hat{a}_k i \hat{a}_k^+

$$[\hat{a}_{k},\hat{a}_{k}^{+}] = \delta_{kk'}, \qquad (8.23a)$$

$$[\hat{a}_k, \hat{a}_{k'}] = 0$$
, $[\hat{a}_k^+, \hat{a}_{k'}^+] = 0$. (8.23b)

Korzystając ze wzoru (8.23a) zapiszmy wzór (8.22) w postaci

$$\hat{H} = \sum_{k} \hbar \omega_{k} (\hat{a}_{k}^{\dagger} \hat{a}_{k} + \frac{1}{2}).$$
(8.24)

Wprowadzone operatory \hat{a}_k i \hat{a}_k^* są tak zwane operatory *anihilacji* i *kreacji* fononów. Jak wiadomo z mechaniki kwantowej, operatory anihilacji i kreacji cząstek są podstawowymi operatorami w przedstawieniu zwanym przedstawieniem *drugiego kwantowania*. W tym przedstawieniu funkcje falowe ψ ($n_1, n_2, ..., n_k, ..., t$) zalezą nie od współrzędnych cząstek, a od liczb obsadzeń własnych stanów Hamiltonianu układu. Wielkość $|\psi$ ($n_1, n_2, ..., n_k, ..., t$)|² określa prawdopodobieństwo tego, że w chwili t na poziomie energetycznym E_1 , znajduje się n_1 cząstek, na poziomie $E_2 - n_2$ cząstek i tak dalej.

Operatory anihilacji i kreacji \hat{a}_k i \hat{a}_k^+ działają na funkcje $\Psi(n_1, n_2, ..., n_k, ..., t)$ w następujący sposób

$$\hat{a}_{k} \psi (n_{1}, n_{2}, \dots, n_{k}, \dots) = \sqrt{n_{k}} \cdot \psi (n_{1}, n_{2}, \dots, n_{k} - 1, \dots) ,$$
 (8.25a)

$$\hat{a}_{k}^{\dagger}\psi(n_{1},n_{2},...,n_{k},...) = \sqrt{n_{k}+1} \cdot \psi(n_{1},n_{2},...,n_{k}+1,...)$$
 (8.25b)

Widzimy, że operator anihilacji zmniejsza liczbę cząstek w stanie E_k o jedynkę, natomiast operator kreacji zwiększa liczbę cząstek w stanie E_k o jedynkę. Ze wzorów (8.25) otrzymujemy, że działanie operatora $\hat{a}_k^+ \hat{a}_k$ nie zmienia liczby cząstek w stanie E_k

$$\hat{a}_{k}^{\dagger}\hat{a}_{k}\Psi(n_{1},n_{2},...,n_{k},...) = n_{k}\cdot\Psi(n_{1},n_{2},...,n_{k},...) .$$
(8.26)

Ze wzoru (8.26) wynika, że funkcje $\Psi(n_1, n_2, ..., n_k, ..., t)$ są własnymi funkcjami operatora $\hat{n}_k \equiv \hat{a}_k^+ \hat{a}_k$, natomiast jego wartościami własnymi są liczby obsadzeń n_k poziomów E_k . Hamiltonian (8.24) możemy zapisać przez operator liczby fononów $\hat{n}_k \equiv \hat{a}_k^+ \hat{a}_k$ w postaci

$$\hat{H} = \sum_{k} \hbar \omega_{k} (\hat{n}_{k} + \frac{1}{2}).$$
(8.27)

Własne wartości – poziomy energetyczne oscylatora harmonicznego o częstości ω_k , określa dobrze znany wzór

$$\hat{H} \cdot \psi = \sum_{k} E_{k} \psi = \sum_{k} \hbar \omega_{k} (n_{k} + \frac{1}{2}) \cdot \psi \quad .$$
(8.28)

Z porównania wzorów (8.27) i (8.28) przekonamy się o słuszności (8.26).

Biorąc pod uwagę wzory (8.15) łatwo wyrazić operatory, odpowiadające współrzędnym normalnym Q_k przez operatory anihilacji i kreacji \hat{a}_k i \hat{a}_k^+

$$\hat{Q}_{k} = \sqrt{\frac{2\hbar}{\omega_{k}}} \cdot (\hat{a}_{k} + \hat{a}_{-k}^{+}) \quad . \tag{8.29}$$

Posługując się wzorami (8.29) oraz (8.2) łatwo wyrazić operator wychylenia $\hat{u}_n(t)$ przez operatory \hat{a}_k i \hat{a}_k^+

$$\hat{u}_{n}(t) = \sqrt{\frac{2\hbar}{mN}} \sum_{k} \frac{1}{\sqrt{\omega_{k}}} (\hat{a}_{k} + \hat{a}_{-k}^{+}) \cdot e^{ika \cdot n} .$$
(8.30)

Z hamiltonianu (8.24) oraz reguł komutacyjnych (8.23) wynikają proste równania ruchu dla operatorów \hat{a}_k i \hat{a}_k^+

$$\frac{d\hat{a}_k}{dt} = \frac{i}{\hbar} [\hat{H}, \hat{a}_k] = i\omega_k [\hat{a}_k^+ \hat{a}_k, \hat{a}_k] = -i\omega_k \hat{a}_k , \qquad (8.31)$$

$$\frac{d\hat{a}_{k}^{+}}{dt} = \frac{i}{\hbar} [\hat{H}, \hat{a}_{k}^{+}] = i\omega_{k} [\hat{a}_{k}^{+} \hat{a}_{k}, \hat{a}_{k}^{+}] = i\omega_{k} \hat{a}_{k}^{+} .$$
(8.31b)

Ze wzorów (8.31) wynika jawna zależność operatorów \hat{a}_k i \hat{a}_k^+ od czasu

$$\hat{a}_{k}(t) = \hat{a}_{k}(0) \cdot e^{-i\omega_{k}t}$$
, $\hat{a}_{k}^{+}(t) = \hat{a}_{k}^{+}(0) \cdot e^{i\omega_{k}t}$. (8.32)

Wyżej otrzymane wzory łatwo uogólnić na przypadek drgań sieci trójwymiarowej – musimy wszędzie zamienić liczby falowe k na wektory falowe \vec{k} .

Jeżeli zapiszemy energię drgań sieci krystalicznej w postaci

$$E = E_0 + \sum_{\vec{k}} n_{\vec{k}} \cdot \hbar \omega (\vec{k}) , \qquad (8.33)$$

to łatwo zauważyć, że stan wzbudzonej sieci krystalicznej możemy uważać za stan doskonałego (bez oddziaływań) gazu kwazicząstek – *fononów*. Na podstawie zasady de Brogle'a ruch fononu możemy scharakteryzować za pomocą prędkości grupowej

$$\vec{v} = \frac{\partial \omega}{\partial \vec{k}} , \qquad (8.34)$$

oraz kwazipędu

$$\vec{p} = \hbar \vec{k} . \tag{8.35}$$

Stan podstawowy idealnego gazu fononów nazywamy *próżnią fononową*. Fizyczne własności próżni fononowej przejawiają się w istnieniu drgań zerowych, których energia wynosi

$$E_0 = \frac{1}{2} \sum_{\vec{k}} \hbar \omega \left(\vec{k} \right) , \qquad (8.36)$$

W przybliżeniu harmonicznym fonony są nie oddziałującymi kwazicząstkami. Gdy uwzględnimy anharmonizm drgań sieci krystalicznej, gaz fononów przestaję być gazem doskonałym. Aby jakościowo wyjaśnić role anharmonizmu, zapiszemy funkcję potencjalną łańcuchu jednowymiarowego z dokładnością do wyrazu trzeciego stopnia

$$U = U_0 + \frac{1}{2} \sum_{n,n'} f(n,n') u_n u_{n'} + \frac{1}{3!} \sum_{n,n',n''} g(n,n',n'') u_n u_{n'} u_{n''} \qquad (8.37)$$

Korzystając ze wzoru (8.30), zapiszmy operator anharmoniczności w (8.37) przez operatory \hat{a}_k i \hat{a}_k^*

Oznaczając

$$V(k,k',k'') = \frac{1}{3!N} \left(\frac{2\hbar}{m}\right)^{3/2} \sum_{n,n',n''} g(n,n',n'') e^{ia(kn+k'n'+k''n'')} , \qquad (8.39)$$

zapiszmy wzór (8.38) w postaci

Ze wzoru (8.40) widać, że operator \hat{U}_{anh} rzeczywiście jest operatorem oddziaływania fononów. Poszczególne składniki w (8.40) znajdują prostą interpretację: na przykład, człon $\hat{a}_k \hat{a}_{k'} \hat{a}^+_{-k''}$ opisuje proces zniknięcia dwu fononów o kwazipędach $\hbar k$ i $\hbar k'$, oraz utworzenie fononu o kwazipędzie ($-\hbar k''$). Składnik $\hat{a}_k \hat{a}_{k'} \hat{a}_{k''}$ opisuje proces zniknięcia trzech fononów o kwazipędach $\hbar k$, $\hbar k'$ i $\hbar k''$, natomiast składnik $\hat{a}^+_{-k'} \hat{a}^+_{-k'} \hat{a}^+_{-k}$ opisuje proces kreacji trzech fononów o kwazipędach ($-\hbar k$), ($-\hbar k'$) i ($-\hbar k''$). W przypadku drgań sieci trójwymiarowej musimy we wzorze (8.40) liczby falowe k zamienić na wektory falowe \vec{k}

$$\hat{U}_{anh} = \frac{3}{\sqrt{N}} \sum_{\vec{k}, \vec{k}', \vec{k}''} \frac{V(\vec{k}, \vec{k}', \vec{k}'')}{\sqrt{\omega(\vec{k})\omega(\vec{k}')\omega(\vec{k}'')}} (\hat{a}_{\vec{k}} \hat{a}_{\vec{k}'} \hat{a}_{-\vec{k}''}^{+} + \hat{a}_{\vec{k}} \hat{a}_{-\vec{k}'}^{+} \hat{a}_{-\vec{k}''}^{+}).$$
(8.41)

W (8.41) zaniedbaliśmy składniki określające anihilację i kreację trzech fononów, ponieważ te składniki dają wkład tylko w wyższych przybliżeniach teorii zaburzeń.

Kwazipędy fononów są określone z dokładnością do wektora $\hbar \vec{q}$, gdzie \vec{q} - wektor sieci odwrotnej. W związku z tym kwazipędy fononów $\hbar \vec{k}$, $\hbar \vec{k}'$ i $\hbar \vec{k}''$ w procesach trójfononowych muszą spełniać warunek

$$\vec{k} + \vec{k}' + \vec{k}'' = \vec{q}$$
 (8.42)

Procesy oddziaływania dla których $\vec{q} = 0$ nazywamy *procesami normalnymi* (albo *N procesami*). Są to zwykle najczęściej występujące procesy. Gdy natomiast we wzorze (8.42) $\vec{q} \neq 0$ oddziaływanie nazywa się *procesem z przerzutem* (albo *U procesem*, od niemeckiego wyrażenia *Umklapprozesse*, wprowadzonego przez Rudolfa Peierlsa w 1927 r.) Procesy *N* i *U* ilustruje rys. 8.1.

Rys.8.1. Proces normalny (a) i z przerzutem (b)