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Preface 

The field of quantum Computation is rapidly evolving. Quantum com- 
puting promises to solve problems that are intractable on digital com- 
puters. Quantum algorithms can decrease the computational time for 
some problems by many orders of magnitude. The main advantage of 
quantum computation is the rapid parallel execution of logic operations 
achieved by using superposition (entangled) states. To build a work- 
ing quantum computer several problems must be solved, including the 
utilization of entangled states, the creation of quantum data bases and 
implementation of quantum computation algorithms. 

The book explains how quantum computation works and how it can 
do many amazing things. It is intended to be useful for students and sci- 
entists who are interested in quantum computation but face difficulties 
in reading the original papers and reviews. 

In the Introduction we present a very short history of quantum com- 
putation. The basic ideas on the Turing Machine are explained in Chap- 
ter 2. In Chapter 3 we describe the binary system and Boolean algebra, 
which are widely used in computer science. Some initial ideas on quan- 
tum computing are presented in Chapter 4. Using simple examples, 
we discuss the following quantum algorithms in Chapters 5 and 6: the 
discrete Fourier transform and Shor’s algorithm on prime factorization. 
In Chapters 7, 8, and 9 we give an overview of digital logic gates and 
discuss reversible and irreversible logic gates, and how to implement 
these gates in semiconductor devices and transistors. Some important 
quantum logic gates are discussed in Chapters 10-14. A summary of 
unitary transformations and elements of quantum dynamics are given 
in Chapter 15. Quantum dynamics at finite temperature is discussed in 
Chapter 16. The implementation of quantum computation in real phys- 
ical systems is considered in Chapter 17. In Chapters 18 and 19, we 
describe a realization of quantum logic gates in an ion trap. In Chapters 
20, 21, and 22, quantum logic gates and quantum computation are dis- 
cussed in linear chains of nuclear spins. Experimental logic gates and 
their achievements and possibilities are described in Chapter 23. One 
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Chapter 1 

Introduction 

At present there are two basic directions on the intersection of modem 
physics, computer science, and material science. The first is the tradi- 
tional approach, struggling to squeeze more devices on a computer chip. 
This direction is a central focus of nanotechnology - a modem science 
which uses a nanometer scale ( m) to measure the size of electronic 
devices. Since the late 1980s, researchers around the globe have tried 
to create single-electron devices to replace the conventional MOSFET s 
(metal-oxide-semiconductor-field-effect-transistor). These devices op- 
erate by moving a single electron in and out of a conducting region. 
Single-electron devices may serve as transistors, memory cells, or build- 
ing blocks for logic gates [1]-[7]. The single-electron transistor has 
evolved so that it is now possible, at room temperature, by applying 
a voltage to the operating electrode (gate), to transfer a single electron 
from a reservoir into a semiconductor island (so-called “quantum dot”) 
surrounded by non-conducting material. Once an electron is in the dot, 
it blocks the transfer of other electrons due to the strong Coulomb repul- 
sion (Coulomb blockade effect) [5, 61. The current through a transistor 
depends on the number of electrons stored in the dot, allowing one to 
“write” and to “erase” the information. Another promising idea explores 
the use of molecules as naturally occurring nanometer-scale structures 
to design molecular devices [5],[8]-[ll]. Devices in these classes take 
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2 INTRODUCTION TO QUANTUM COMPUTERS 

advantage of the quantum physics that dominates the nano-meter scale. 
All these devices are described by conventional current-voltage charac- 
teristics and are intended for traditional digital computers that operate 
using two values of a bit, “0” and “1”. 

The second approach is quantum computation, the main topic of this 
book. A quantum computer is intended not for accelerating digital com- 
putation using quantum effects, but to utilize new quantum algorithms 
which are not possible in a digital computer. In a quantum computer, the 
information is loaded as a “string” of quantum bits - “qubits”. A qubit 
is a quantum object, for example, an atom (an ion) which can occupy 
different quantum states. Two of these states are used to store digital 
information. An atom in the ground state corresponds to the value “0” 
of the qubit. The same atom in the excited state corresponds to the value 
“1” of this qubit. So far, there is nothing new in comparison with the 
traditional digital computer except a higher density of digital informa- 
tion. 

The main advantage of the quantum computer is not connected with 
the density of qubits. The difference is that quantum physics allows one 
to operate with a superposition of quantum states. For one atom, one can 
produce an infinite number of superpositional states using just two basic 
quantum states, which correspond to “0” and “1”. For example, if two 
states have the energies, Eo and E l ,  one can prepare a superposition of 
states, “0” and “l”, which corresponds to any average value of energy 
between the values Eo and El.  However, measuring the energy of a 
single atom, one can get only one of two results, Eo or E l ,  i.e., the 
states “0” or “1”. To measure the average value of energy, one must use 
large number of identically prepared atoms. 

Utilization of superpositional states allows one to work with quan- 
tum states which simultaneously represent many different numbers. This 
is called “quantum parallelism”. What is the main advantage of quan- 
tum parallelism? If one has an efficient algorithm for calculation, like 
an algorithm for calculation of a sum, a product, or a power, then the su- 
perposition of numbers is not important. But there are problems which 
are considered today as intractable - problems which do not have an ef- 
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ficient algorithm. One such very important problem is the factorization 
of an integer. It can take thousands and thousands years for the most 
powerful digital computers to find the prime factors of a 200-digit num- 
ber. A quantum computer can operate simultaneously on many numbers, 
leaving for an “observer” only the few desired numbers. The undesired 
numbers are removed by destructive interference. The usual comparison 
for this process is reflection of a light beam from a mirror. The reflected 
light is a superposition of photons moving in many different directions. 
Only one direction is selected by nature - the direction which corre- 
sponds to the law of reflection. Quantum computing makes use of a 
similar effect - constructive interference in the “desired” direction and 
destructive interference in all others. 

Note, that unlike a digital bit which, in the process of calculation, as- 
sumes a definite sequence of values, “0” and “l”, a qubit can be involved 
in a complex superposition of states with other qubits. One cannot de- 
termine the value of a specific qubit until the end of the calculation when 
the final measurement destroys the superposition. The output of quan- 
tum computation is very similar to the output of digital computation. 
The output is the same sequence of data obtained by measuring the state 
of the qubits: “there is voltage” (represented by “l”), and “there is no 
voltage” (represented by “0”). For example, after the action of the ap- 
propriate electromagnetic pulse, the excited metastable state of the ion 
produces a fluorescence which can be transformed into an electric sig- 
nal. For the same input, one can get different outputs which correspond 
to the output from probabilistic digital computation. For more sophisti- 
cated schemes of quantum computation, for example, computation with 
an ensemble of nuclear spins at room temperature, an output is an elec- 
tromagnetic signal (the signal due to nuclear precession) which can be 
analyzed by standard electromagnetic methods. 

The history of quantum computing began with the academic ques- 
tion concerning the minimum amount of heat produced in one com- 
putational step. In 1961, Landauer showed that the only logical opera- 
tions which require dissipation of energy are irreversible ones [12]. This 
led Bennet to the discovery of the possibility of reversible dissipation- 
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less computation [ 131. Then, Toffoli suggested the famous reversible 
CONTROL-NOT gate (or CN-gate), which changes the value of a target 
bit (0 + 1, or 1 + 0) if the control bit has a value 1 [14]. Toffoli 
also showed that reversible three-bit-gates (CONTROL-CONTROL-NOT, 
or TOFFOLI-gates) are universal for digital computation, i.e. combina- 
tions of these gates can produce any digital computation. 

In the early 1980s, the idea of the quantum computer was intro- 
duced by Benioff [15] and Feynman [16]. They showed that bits rep- 
resented by quantum-mechanical states can evolve under the action of 
quantum-mechanical operators to provide reversible computation. In 
1989, Deutsch introduced the universal three-qubit quantum logic gate 
[17]. He showed that due to the exploration of a superposition of quan- 
tum states, quantum computation can be much more powerful than digi- 
tal ones. In 1993, Lloyd proposed the implementation of quantum com- 
putation using electromagnetic pulses which induce resonant transitions 
in a chain of weakly interacting atoms [ 181. 

In 1994, an explosion of interest in quantum computation was caused 
by Shor’s discovery of the first quantum algorithm which can provide 
fast factorization of integers [19]. Shor’s algorithm requires a time 
proportional to L2 for a factorization of a number with L digits, com- 
pared with - exp(L’”)), for the best known digital computer algorithms. 
Quantum computers represent a potential threat to modem cryptography 
which assumes that fast factorization algorithms do not exist. In 1995, 
Barenco et al. [20] showed that a two-qubit CONTROL-NOT gate, in 
combination with a one-qubit rotation, are universal for quantum com- 
putation. This discovery made a quantum CONTROL-NOT gate of central 
importance for quantum computation. In the same year, Cirac and Zoller 
[21] suggested the practical implementation of quantum computation 
using laser manipulations of cold trapped ions. The first two-qubit quan- 
tum logic gate was demonstrated experimentally by Monroe et al. [22], 
who used the Cirac-Zoller scheme for a single Bef ion in an ion trap. 
Results on very interesting the Los Alamos trapped ion quantum com- 
puter experiment can be found in [23]. Turchette et al. demonstrated 
two-qubit quantum logic gates for polarized photons in a quantum elec- 
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trodynamic cavity [24]. In 1995, Shor suggested the first scheme for a 
quantum error correction code [25]. His work stimulated a large num- 
ber of papers which discuss different approaches to this problem. In 
1996 Grover [26] (see also [27]) developed a fast quantum algorithm 
for pattern recognition or data mining. For N elements in the data base 
only about f i  trials are required for Grover’s algorithm to find a given 
element, compared with N/2  trials for the classical algorithm. 

In 1996, Gershenfeld, Chuang and Lloyd [28, 291, and, simultane- 
ously, Cory, Fahmy and Have1 [30] showed the possibility of quantum 
computation in an ensemble of quantum systems at room temperature. 
The experimental implementation of this idea (which utilizes a system 
of weakly interacting nuclear spins in molecules of liquid) is now be- 
ing attempted [30]-[32]. One might think, that room temperature is 
incompatible with the idea of quantum computation, which relies on 
manipulation with complicated superpositional states. (These “entan- 
gled states” cannot be represented as the product of states of individual 
atoms.) Indeed, the interaction with the environment quickly destroys 
superpositional states. These superpositional states do not “survive” in 
our “classical” world. This phenomenon of losing quantum coherence 
is commonly called “decoherence” [33,34]. Decoherence has a charac- 
teristic time-scale. Quantum computation must be done on a time-scale 
less than the time of decoherence. This is true for both the “pure” quan- 
tum system, at zero temperature, and for a room temperature ensemble 
of quantum systems (molecules). The characteristic time of decoher- 
ence depends not only on temperature, but also on the system. For nu- 
clear spins, this decoherence time is long enough, even at room tempera- 
ture. The main problem which prevented an implementation of quantum 
computation using room temperature ensembles is the following: How 
can one prepare a sub-ensemble, where only one state, for example, the 
ground state, will be populated? This problem was solved in references 
[28,29, 301. 

Discussions of a potentially realizable quantum computer involve 
a new field of investigation, quantum computer material science. This 
new field requires finding a medium which has a long enough charac- 
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teristic time of decoherence. The theory of decoherence is the theory of 
relaxation processes for complex quantum states. Future development 
of this theory could significantly influence the progress in quantum com- 
putation. However, the problems connected with decoherence have no 
a direct relation to the main ideas of quantum computation. So we will 
not discuss decoherence further in this book. 

The increasing number of reviews on quantum computation (see, 
for example, references [35]-[43]) reflects the rapidly growiqg interest 
in the field. At the same time, many students and scientists interested in 
quantum computation face all the difficulties common to any research 
which requires a knowledge of several different disciplines. A computer 
scientist often is not familiar with the ideas or even the terminology of 
quantum physics. Physicists have a similar problem with computer sci- 
ence. Overcoming this language barrier is the main reason for writing 
this introduction to quantum computers. The second reason is connected 
with our own work in the area of dynamics of quantum logic gates and 
quantum computation. This book includes the basic physics and com- 
puter science information necessary to understand quantum computa- 
tion and the main directions in this quickly developing field. We avoid 
rigorous proofs and concentrate on specific illustrations which clarify 
the main ideas. At the same time, for simple examples, we present all 
necessary calculations. The reader can see how an idea works without 
omitting the details which often prevent the essential understanding of 
the whole idea. 

We discuss almost all of the main topics of quantum computation 
which have been discussed in the literature. We consider Shor’s algo- 
rithm and the discrete Fourier transform; quantum-mechanical operators 
(quantum logic gates) which are used in quantum calculations; physical 
implementations of quantum logic gates in ion traps and in spin chains, 
including an analysis of an ensemble of four-spin molecules at room 
temperature. We also discuss one of the simplest schemes for quan- 
tum error correction; correction of errors caused by imperfect resonant 
pulses; and correction of errors caused by the non-resonant action of a 
pulse. Because of the central importance of the quantum CONTROL-NOT 
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gate for quantum computation, we included in this book our results 
on numerical simulations of dynamical behavior of this gate. We also 
present a short review of some basic elements of computer science, in- 
cluding the Turing machine, Boolean algebra, and logic gates. These are 
topics familiar to students of computer science, but are not well-known 
to many physicists. We also explain, where we felt it was necessary, the 
basic principles of quantum mechanics, which are probably not known 
to many computer scientists. 

Our introduction is intended to be useful for students and scientists 
who are interested in quantum computation but do not have time or in- 
clination to examine the original articles and reviews. We hope that this 
book will help a new generation of researchers who want to be involved 
in this new field of science which is expected to become of great prac- 
tical importance. We also expect that this book will provide a new and 
deeper appreciation of the fundamental quantum phenomena. 



Chapter 2 

The Turing Machine 

The simplest “theoretical” digital computer is the Turing machine [44, 
451. Here the word “digital” indicates that the computer operates only 
with definite numbers (and does not use any quantum mechanical su- 
perposition of states). This machine was suggested by the British math- 
ematician, A.M. Turing. The Turing machine has three parts, a tape 
divided into the squares, a scanner, and a dial, as in Fig. 2.1. This ma- 
chine can write a symbol X or 1 in a blank square, and erase them. Any 
positive integer is written as a sequence of 1’s. For example, the number 
5 corresponds to the sequence 11 11 1. The symbol X indicates where 
a number begins or ends. For example, Fig. 2.1 shows two numbers 
1 which are “prepared” for addition. The program for addition is pre- 
sented in Tbl. 2.1. The symbol D is the command to “write the digit 1” 
in the corresponding square on the tape; X means “write X”; E means 
“erase”; R means “move the tape one square to the right”; L means 
“move tape one square to the left”. The numbers 1 to 6 after the letter 
indicate the command to “change the dial setting to this number”. The 
question mark represents a “mistake”; an exclamation mark means “job 
is completed”. 

Now we shall describe the process of addition. First, the scanner 
sees the number 1 on the tape, and the dial setting 1. The instruction on 
the intersection (1,l) is R1: “move the tape one square to the right, and 

8 
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x l x  x l x  

scanner I 
dial 

4 

Figure 2.1 : The Turing machine 

dial 
setting 

scanner - 
symbol 

Table 2.1: The program for addition in the Turing machine. 
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x l x  

set the dial to 1”. The second position is shown in Fig. 2.2. Here, the 

x l x  

x l x  1 x  

Figure 2.2: The second position of the Turing machine 

scanner sees an X on the tape, and the dial setting is 1. The second 
instruction (1 ,X) is E2: “erase X, and set the dial to 2”. The third 
position is shown in Fig. 2.3. The third instruction (2,O) is R2. Tbl. 2.2 

Figure 2.3: The third position of the Turing r 

shows the sequence of positions and instructions following Fig. 2.3. The 
number in parentheses inside the square indicates the dial setting at the 
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7 instructions 

Table 2.2: The sequence of positions and instructions following Fig. 2.3. 
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position of the scanner. For example, l(5) indicates that the scanner 
points to the square whose index is 1 and the dial setting is 5. If the 
scanner points the blank square, and the dial setting is 6, the correspond- 
ing notation in the Tbl. 2.2 is (6). The last row in the Tbl. 2.2 shows the 
result of addition: 1+1=2. The program for multiplication requires 15 
numbers on the dial, but the idea of the programming is the same. 

The Turing machine has the same main components that any com- 
puter has. The writing and erasing elements represent the arithmetic 
unit, which perform calculations. The table of instructions (Tbl. 2.2) is 
the control unit. The tape and the dial are the memory unit. 



Chapter 3 

Binary System and Boolean 
Algebra 

Most “practical” computers make use of the binary system. In this sys- 
tem, any integer N is represented in the form, 

N = CLZ,,~~, 
I1 

where a,I takes the values, 0 or 1. For example, 59 = (111011), is a 
notation for, 

59=  1 . 2 5 +  1 . 2 4 +  ~ 2 ~ + 0 . 2 ~ +  1 . 2 l +  1.2’. 

Let us assume that a practical computer will add the two numbers, 2 
and 3. Because 2 = 1 . 2 ‘  + 0 .  2’, and 3 = 1 .2 ’  + 1 .2’, we have in 
the binary system, the two numbers, (10) and (1 1). First, we add 0 and 
1 (right column) to get 1. Then, we add 1 and 1 (second column from 
the right), and get 0 for the second column, and a carry-over of 1 for the 
third column. So, the sum is equal to (101). In the decimal system (101) 
is 1 . 22 + 0 .2l + 1 .2’ = 5. A table for the addition of the binary digits 
(bits) is given in Tbl. 3.1. 

In Tbl. 3.1, A is the value of the bit in any column of the first num- 
ber; B is the value in the same column of the second number; C is the 

13 
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1 0 1 0 1  

1 0 0 1 0  

0 1 1 0 1  

0 1 0 1 0  

0 0 1 1 0  

0 0 0 0 0  

Table 3.1: The table of addition in the binary system. 

carry-over from the addition in the column to the right; S is the value 
of the bit in the sum, and D is the value of the carry-over to the next 
column to the left. 

To work with this table, it is convenient to use the methods of the 
Boolean algebra [45]. These methods are especially useful, because, as 
we discuss below, the expressions written in terms of Boolean algebra 
are convenient for implementation in electrical circuits. A two-valued 
Boolean algebra can be defined by the tables of addition (Tbl. 3.2a) and 
multiplication (Tbl. 3.2b). In Boolean terminology the two operations 
are often referred as the OR and AND operations, respectively. The digits 
in the first row and column of each of the tables 3.2 refer to the values of 
each of the two input bits upon which the operation is performed, while 
those in the interior of the tables 3.2 give the value of the resulting output 
bit. 

In terms of the Boolean algebra, the expression for S in Tbl. 3.1 can 
be written as, 

S = ( A B  + AB)C + ( A B  + AB)C,  (3.1) 

where “bar” means “complement”. (The complement of 0 is 1, the com- 
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Table 3.2: The tables of addition, (a), and multiplication, (b), for the 
two-valued Boolean algebra. 

plement of 1 is 0). Let us check, for example, the second row in Tbl. 3.1. 
We have, 

A = l ,  B = l ,  C = O .  

so, - - - 
A = O ,  B = 0 ,  C = l .  

According to the Tbl. 3.2b, 
- - 

AB = 0 . 1  = 0. AB = 1 . O  = 0. 

Then, according to the Tbl. 3.2a, 

(AB + AB)C = 1 . O  = 0. 

The second term in expression (3.1) is equal to 0 . 1 = 0. So, the final 
value of the right side in (3.1) is, 0 + 0 = 0, which is equal to the value 
of S in the second row in the Tbl. 3.1. The expression for D can be 
written as, 

D = ( A B  + AB)C + AB. 

( A B + A B ) c + A B  = o . o + i .  I = o + i  = 1, 

(3.2) 

For example, for the second row in Fig. 3.1 we have, 

which is equal to the value of D in this row. 
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Figure 3.1: The left system of circuits, A3A2A1, is loaded with the num- 
ber 2. The right system of circuits, B3B2B1, is loaded with the number 
3.  

Now, we can ask what is the simplest “practical” computer for addi- 
tion, using Boolean algebra. Consider a system of circuits, each circuit 
having two current states - “current” or “no current”. The first state 
corresponds to the value of the binary unit 1 and the second state corre- 
sponds to 0. We can write any number in the binary system using this 
system of circuits. Another system of circuits keeps the second number. 
In Fig. 3.1, the left system of circuits (A) is loaded with the number 2 
((lo), in the binary system). In Fig. 3.1, the number 2 is represented in 
the form, A3A2A1 = 010. The right system of circuits (B) is loaded 
with the number 3 ((1 l), in the binary system; B3 B2B1 = 01 1). The 
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value 1 of a bit corresponds to the closed position of a switch (presence 
of a current in a circuit). The value 0 of a bit corresponds to the open 
position of a switch (no current in a circuit). Between the left and the 
right circuits one installs the systems of circuits, S and D, which hold 
the information about the sum and the carry-over, correspondingly. The 
main problems are the following: How does one operate on the values 
of bits A l  and B1 to obtain the values of S1 and D1? How does one 
operate on the values of A2, B2 and D1 to obtain the values of S2 and 
D2? And so on. To do this, requires transformations (logic gates) which 
operate according to formulas (3.1) and (3.2). 

These gates can be designed using a system of circuits. Assume, 
that we have three bits, A ,  B ,  and C ,  which are implemented by three 
circuits, A, B ,  and C ,  correspondingly. In Fig. 3.2, we demonstrate, as 
an example, the gate which transforms the values of the bits, A, B and 
C ,  into the value ( A B  + A B ) C  (the first term in (3.2)). In Fig. 3.2, we 
suppose that the switches “a” and “b” are closed if there is no current in 
the adjacent coils. If there is a current in the adjacent coil, the magnetic 
field of the coil forces the switch to be open. Special springs keep the 

“h” open if there is no current in their 
adjacent coils. A current in the coils causes the adjacent switches to be 
closed. Assume, for example, that the value of the bit A is 1. So, there 
is a current in the circuit A (see Fig. 3.2). In this case, the switch “a” is 
open, and no current flows through this switch. If there is no current in 
the circuit A, there is a current through switch “a”. This means that the 
current through switch “a” corresponds to the value of the complement 
A, A. Correspondingly, the current through the switch “b” corresponds 
to the value B .  

Next, we have current through the switches “e” and “f” only if there 
is the current in the circuit B, and the switch “a” is closed. This means 
that the current through the switches “e” and “f” corresponds to the 
value, A B  ( A B  = 1 if A = 1 and B = 1. Otherwise, A B  = 0). 
Analogously, the current through the switches “c” and “d” corresponds 
to the value A B .  The switch “g” is closed if there is current in the 
adjacent coil, i.e. if there is at least one current through the switches 

switches <Lc>7 ,  “&?, <Ce99, “f”, <Cg79,  
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4 T a J  

C 

Figure 3.2: The logic gate which transforms the values of the bits A ,  B ,  
and C into the value ( A B  + AB)C,  indicated by the current through the 
switches “gh”. 
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“ef” or “dc”. That means that the switch “g” is closed if at least one 
of the products A B  or A 8  is equal to 1. So, the switch “g” is closed 
when A B  + A B  = 1 ,  and open when A B  + A B  = 0. This arrangement 
thus implements the Boolean addition or OR operation. The switch “h” 
is closed if there is the current in the circuit C, i.e. C=l. This case is 
shown in Fig. 3.2. So, we have a current through the switches “g” and 
“h” only if A B + A B  = 1, and C=l . It means that the current through the 
switches “gh” corresponds to the value of ( A B  + A B ) C .  Analogously, 
using a more complicated scheme, we can arrange circuits with currents 
corresponding to the values S (3.1) and D (3.2). In modern computers, 
complex circuits are built using tiny silicon transistors, but the main idea 
of logic gates which transform the values of bits, is the same. 



Chapter 4 

The Quantum Computer 

In a “practical” digital computer information is coded as a string of bits. 
In “quantum” computers, the elements that carry the information are 
the quantum states. For example, one can use two quantum states of 
an atom - the ground state and the excited state. The quantum system 
can be populated either in the ground state lo), or in the excited state 
I 1 ) . One might think that a quantum computer provides only an oppor- 
tunity for greatly increasing of the density of bits. The reality, however, 
is much more powerful. A quantum system can be populated not only 
in the ground state or the excited state 10) or I l),  but in any linear com- 
bination (or superposition) of these two states. That is why instead of 
the term “bit”, the new term “qubit” (quantum bit) was introduced. The 
main advantage of quantum computation is that it allows one to make 
use of the technique of quantum parallelism, which can produce quan- 
tum computations that are even more powerful than massively parallel 
classical ones. 

One can wonder how to use a superposition of qubits for determin- 
istic calculations. Indeed, for the deterministic calculations considered 
above, we only can use the ground state and the excited state of the 
quantum system. So, in this case there is no distinction between bits 
and qubits. New opportunities arise in quantum computing because the 
computation do not have to be deterministic. Sometimes, it is more con- 

20 
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venient to allow a computer to execute its steps randomly. This kind 
of computation can be called a probabilistic computation [39]. Usually, 
there are many different ways to arrive at the final answer, and each way 
has its own probability. If the probability of the very quick ways is high 
enough, the answer is found quickly most of the time. Then, probabilis- 
tic calculations can be used instead of deterministic ones. For example, 
there exists a fast algorithm for addition which we used for deterministic 
computation. But there are no fast algorithms for factoring. To find the 
factors of a number, we can try sequentially all natural numbers starting 
from 2 (deterministic way), or we can try numbers randomly with some 
restrictions (This is the probabikatic way). 

If we use a superposition of quantum states, the computation will be 
also probabilistic, but different from classical probabilistic computation. 
There will be many different possible ways for a quantum system to 
attain the final state (final answer), but every way can be described not 
by the probability, but by the amplitude of the probability. Probability 
amplitudes are complex numbers, sum of which can add to zero (or 
cancel each other). The quantum computer will be efficient if only the 
correct answer survives with high probability, and the incorrect answers 
cancel each other. 

Below we discuss Shor’s quantum algorithm of efficient computa- 
tion, following mainly the review of Ekkert and Loza [39]. The effi- 
ciency of computation is connected with the time of computation as a 
function of the size of the input. An algorithm is efficient if the time 
taken for computation increases no faster than a polynomial function 
of the size of the input. For example, the number N requires approxi- 
mately L = log,N bits. (With L bits one can load any number from 
0 to 2L - 1.) If there exists an efficient algorithm which computes the 
factors of N ,  it must have the number of computational steps S less than 
or equal to a polynomial function of L. It is known that any composite 
number N has a factor in the range (1, a). If we try each number in 
this range to find a factor of N ,  it requires at least S = f i  = 2L/2 
steps. The function S ( L )  depends exponentially on L.  So, this deter- 
ministic algorithm is not efficient. A quantum computer will have an 
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advantage in comparison with a digital computer if the quantum algo- 
rithm is efficient for a problem which does not have an efficient digital 
algorithm. 

The first efficient quantum algorithm was invented by Shor [19], 
for finding the period of a periodic function. Below we shall describe 
this quantum algorithm using a simple example of a periodic function, 
f (x) ,  where x takes only the integer values, 0, 1, 2, .... The problem 
consists of finding the period of the function f ( x )  using Shor’s algo- 
rithm. Assume that we have two strings of qubits. The string of qubits 
which holds the values of argument, x, we shall call the X string (regis- 
ter). The string of qubits which holds the values of the function, f ( x ) ,  
we shall call the Y string (register). Consider, for example, a function 
f(x) = cos(nx) + 1, with the period, T = 2. If the argument x takes the 
value 5 ,  the value of function is f ( 5 )  = 0. These values of x and f (x)  
correspond to the following states of two registers, X and Y ,  written in 
the binary system using the Dirac notation, 

x : I000 ... 101); Y : I000 ... 000). 

Below we shall use the following notation for representation of the states 
of registers X and Y :  Ix, f (x)) .  For the case considered above we have, 

Ix, f (x))  = 1000 ... 101,000 ... OOO), 

or in decimal notation, 

In what follows, we shall use more complicated states, Ik, f ( n ) ) ,  and 
their superpositions, x k , , ,  Ck,n  Ik, f ( n ) ) .  

According to Shor’s algorithm, the register X is placed initially in 
the uniform superposition of all digital states. For example, if the reg- 
ister X consists of three qubits, the uniform superposition of 23 = 8 
digital states is, 

1 x : - (1000) + (100) + 1010) + lOOl)+  
A (4.1) 
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1011) + 1101) + 1110) + 1111)) . 
(One does not have to know the values of the function f (x)  in advance. 
These values are computed in parallel by a quantum computer [19]. 
There exist a standard digital algorithm that computes the function f ( x )  
for any value of x, see reference [39]. This digital algorithm can be re- 
alized with reversible digital gates. These gates can then be replaced by 
quantum logic gates, which can then be decomposed into a collection of 
two qubit CONTROL-NOT gates and one qubit rotations. Quantum logic 
gates act on superposition of the states Ix, 0), and produce a superposi- 
tion of the states Ix, f (x)) .  A concrete example is given in Chapter 17.) 
In decimal notation, this is a superposition which can be written as, 

As one can see from (4.1) and (4.2), already at the first stage of com- 
putation, the quantum mechanical approach allows one to use a “super- 
position of numbers”, which is impossible for a digital computer. The 
register Y ,  as before, holds the ground state 10) for all qubits. Next, the 
whole system X Y  of two registers is placed into a uniform superposition 
of states, 

In decimal notation it will be the following superposition, 

14, f (4))  + 15, f ( 5 ) )  + 16, f(6)) + 17, f t7))) .  
The vector-diagram in Fig. 4.1 represents the superpositional state (4.3). 
Actually, the function \I, in (4.3) is the wave function of the atomic 
system which represents registers X and Y .  Next, according to Shor’s 
algorithm, the register X transforms by the following rule, 
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Figure 4.1: The vector-diagram for the superpositional state (4.3). Every 
vector on the intersection, Ix) and I f  ( x ) )  represents the corresponding 
amplitude at the term Ix,  f ( x ) )  in (4.3). The length of the vector is 
proportional to the modulus of the complex amplitude (1/& in this 
case). The angle between the direction of the vector and the horizontal 
line is the phase, sp, of the complex amplitude (0, in this case). 
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where n and k are written in decimal notation. For example, the state 
15) transforms into the following superpositional state, 

The transformation (4.4) is a discrete Fourier transform for the register 
X. Now we apply this discrete Fourier transform (4.4) to the wave func- 
tion \I/ in (4.3). As a result, we obtain the following new wave function, 

1 
8 
-17){lf(O)) + e14Ti/81f(l)) + e14ni2/8 If(2)) + . . . + e'4"'7/81f(7))}, 

where l O ) I f ( O ) )  means 10, f ( 0 ) ) ;  l O ) I f ( l ) )  means 10, f ( l ) ) ,  and so on. 
The wave function \I/' is represented by the vector-diagram in Fig. 4.2. 
The wave function (4.5) describes the entangled (mixed) state of the 
system of atoms (ions) corresponding to the qubits involved in the X 
and Y registers after the discrete Fourier transform of the register X. 
According to Shor's algorithm, one can find the period of the function 
f(x) by measuring the state of the register X .  Later we will explain how 
one can implement this wave function in physical quantum-mechanical 
systems. 

Assume, for example, that the function f ( x )  has the period T = 2, 
i.e. f ( 0 )  = f(2) = f ( 4 )  = f ( 6 ) ,  and f(1) = f(3) = f ( 5 )  = f (7 ) .  
In this case, we can rewrite formula (4.5) as, 
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If(0)) - - - - - - - - - - - - - - - 
10) 11) 12) 13) 14) 15) I S )  17) 

Figure 4.2: The vector-diagram for the wave function (4.5). The length 
of each vector is 1/8. 
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Consider, for example, the terms in (4.6) which contain the state 11) in 
the register X. The complex amplitudes in the first parentheses have the 
phases, 

0,  n/2,  n, (3/2)n. (4.7) 

Consequently, these amplitudes cancel each other. The complex ampli- 
tudes in the second parentheses have the phases, 

n/4,  3x14, 5n/4, 7n/4, (4.8) 

which also differ by n/2. So the corresponding complex amplitudes 
also cancel each other. Below we present the corresponding phases for 
four states, 

12, f(0)) : 0,  n, 2n, 3n, (4.9) 
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lf(1)) 

If(0)) 

Figure 4.3: 
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15) 16) 17) 

The vector-diagram corresponding to the wave function 
J/' (4.12). This diagram is obtained from Fig. 4.2 by addition the 
vectors (amplitudes) corresponding to the same states, li, j ) ,  when 

The length of each vector is 1/2. 
f ( 0 )  = f ( 2 )  = f(4) = f(6) and f ( 1 )  = f(3) = f ( 5 )  = f ( 7 ) .  

For all these functions, the corresponding complex amplitudes in (4.6) 
cancel each other. For the terms in (4.6) which involve the function 
14, f (O)), we have for the corresponding phases, 

0, 2n, 4n, 6n, (4.10) 

which provide a constructive interference for the complex amplitudes. 
The same is valid for the function 14, f ( l ) ) ,  with the phases, 

n, 3n, 5n, 7n. (4.11) 

Finally, from (4.6), we have for Q', 

1 
Q' =  lo, f (O))  + lo, ?(I)) + 14, f (O))  + eirr 14, f ( 1 ) ) ) .  (4.12) 

The wave function Q' is schematically represented by the vector- 
diagram, in Fig. 4.3. Now, measuring the state of the register X ,  we get 
the numbers 0 or 4. Each of these has the probability 1 /2. According to 
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Shor’s algorithm, a measurement of the state of register X gives one of 
the values, k ,  

(T - l )D 
k = 0 ,  D / T ,  2 D / T ,  3 D / T ,  ..., (4.13) 

T ’  
where D is the number of possible digital states of register X (if D is 
divisible by T ) .  In our case, D = 23 = 8. Measuring the state of the X 
register, corresponding to wave function (4.12), one finds that the values 
of k are: k = 0 or k = 4. From these measurements, and talung into 
account (4.13), one concludes that T = 8/4 = 2. 

The question remains - how to find the period T of the function 
f ( x )  if in the process of measurement, the quantum algorithm provides 
many integer values, k ,  which are multiples of D / T ,  where D is the 
total number of states? Consider a simplified case when D is exactly 
divisible by T .  Assume, for example, that T = 8. Let us consider how 
to get this number, T = 8, if the result of measurement of the state of 
the register X (the values k )  is known. Assume that, 

D = 2’ = 128. (4.14) 

It follows from (4.13), that the measurement of the state of register X 
gives one of the following 8 values of k ,  

k = 0 ,  16, 2 . 1 6 = 3 2 ,  3 . 1 6 = 4 8  ,..., 1 6 . 7 = 1 1 2 .  (4.15) 

Let us, for example, suppose that the value k is measured and one ob- 
tains the value, 80. In this case we have for D l k ,  

D 128 
k 80 
- 

We can find the greatest common divisor of 128 and 80, to get, 

D 8  
k 5’ 
- - -  - 

(4.16) 

(4.17) 

The numerator of this fraction is equal to the period T .  For other values 
of k from (4.15) we get, 

4 8  D 8 - = 8, 4, - 2, 3’ 7’ 
k 3’ 

(4.18) 
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When we reduce D / k  to the lowest terms (see (4.18)), we get the max- 
imum value of the numerator 8, which is equal to the period, T .  The 
probability of getting this value is high enough: W=1/2. 

Thus, a quantum measurement of the state of the register X pro- 
duces, 

D 
T k=m-- ,  m = 0 , 1 , 2  ,..., T - 1 ,  (4.191) 

with equal probability. The fraction, 

D / k  = T / m ,  (4.20) 

in the lowest terms has the greatest numerator which is equal to the 
period T ,  if T and m do not have common divisors other than one. It 
is shown that the probability of this event is high enough to provide an 
efficient calculation with the probability of success as close to one as we 
wish [39]. 

Let us briefly summarize the algorithm described above. Using a 
quantum mechanical approach, we design a wave function, Q’ (429, 
which involves a superposition of all possible values of the argument x .  
The quantum computer “tries” all these numbers and automatically se- 
lects the superposition of the states with the “desired” measured values 
of the register X - multiples of D/ T .  Note, that the quantum algorithm 
is deterministic, but the output is probabilistic. The main advantage 
of a quantum computer is that it tries all possible values of x simulta- 
neously (in parallel). But this “quantum parallelism” does not require 
many computational steps, because the undesirable (incorrect) numbers 
cancel each other, leaving only the correct values of x. In the case con- 
sidered above, these correct values appeared with equal probabilities. 



Chapter 5 

The Discrete Fourier 
Transform 

The quantum algorithm described above includes the use of the discrete 
Fourier transform (4.4). The question is how to describe this transforma- 
tion in terms of quantum-mechanical operators? The efficient algorithm 
for Fourier transform based on application of quantum-mechanical op- 
erators was suggested by Coppersmith and Deutsch (see review [39]). 
Assume we have L qubits in the register X ,  which can hold any num- 
ber x, from 0 to 2L - 1.  Any number x (in decimal notation) can be 
expressed as the state, 

where 
L-1 

x = p 2 ’ .  ( X i  = 0, 1). 
i=O 

The symbol 8 in (5.1) means a tensor product, which represents a dif- 
ferent notation for L-qubit basic states. In what follows, we shall omit 
the symbol @. Let us introduce the one-qubit (one-atom) operator, A , i ,  
which acts only on the qubit represented by j-th atom. This operator is 
intended to “mix” in a proper way the two basic states, lo j )  and I l j )  of 
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j-th qubit. The explicit form of the operator A,, is, 

A,j = 2-”’(IO,j)(O.jI + 1 0 j ) ( l , j 1  + Il / ) (Ojl  - I l j ) ( l , j I ) ,  (5 .3 )  

( j  = 0, ..., L - 1 ) .  

The action of the operator l i j )  (k j  I on the state 1n.j) is defined by the rule, 

lij)(kjl In,/) = 8knIi.j)> (5.4)  

1 ,  , k = n ,  { 0, k # n .  akn = 

In matrix representation, the operator Inj)  (rn,i I only has a non-zero ma- 
trix element in the n-th row and rn-th column (the rows and columns are 
counted from zero). For example, 

The index j indicates that the matrix (5 .5 )  acts only on the states of the 
j-th qubit (state Ixj) in (5 .1)) .  

We shall also introduce a two-qubit operator which acts on the states 
of qubits, j and k,  

B,jk = I o . j k ) ( O , j k l  + Iljk)(l,jkl -k 12jk)(2jkl + eiejk13jk)(3,jkl, (5 .6)  

In (5 .6)  the following notation is used, 

12,jk) = 1 1 j O k ) ~  13jk) = 11,jlk)j 

Talung into account (5 .4) ,  we have the rule of action of the one-qubit 
operator, A , ,  on the basic states of a qubit, 

1 
Aj lOj)  = - ( l O j )  + l l j ) ) ,  (5.8) 2/2 
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Using (S.4), we have from (5.6), 

Bjk13.jk) = e ~ p ( i n / 2 ~ - . ~ ) 1 3 ~ ~ ) .  

It follows from (5.9) that the operator B j k  changes only the state 

shifting its phase. The quantum-mechanical operators A,j and Bjk allow 
one to perform a discrete Fourier transform of the wave function. For 
this, one applies the operator AL-l to the state Ix) (S.1). Then, one 
applies the operator (AL-~BL-~ ,L- I )  to the resultant state. After this, 
one applies the following operators, 

AL-3 BL-3,L-2BL-3,L-I) 3 (5.10) 

and so on. For our example described by the wave function (4.3), we 
apply to this wave function the following three groups of operators: A2, 
then ( A ~ B I ~ ) ,  then (AoBolB02). As the result, we have: 

AoBo1 Bo2A 1 B12A2 Ix) . (5.12) 

Assume, for example, that 

Ix) = 12) = JXZXIXO) = lolo), (5.13) 

where, on the right side, we omitted the indices which indicate the posi- 
tions of the qubits because these qubits are written in an ordered form. 
Then, using (5.8), we have after the first step, 
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1 
A21O)ll)lO) = -(lo) + I1))l1)10). .Jz 

The subsequent steps give the following results, 

The operator B02 does not change the last state in (5.15) because this 
operator affects only the states Ilkl) .  The operator Bol also does not 
change the last state in (5.15), because it affects only the states Ikll) .  

Finally, from the state 1010) (5.13), after applying the operator Ao, 
we obtain the following state, 

lO)IO)(lO) + 11)) - lO)Il)(lO) + I1)>+ (5.16) 

ein/211)lo)(lo) + 11)) - ein"I1)I1)(IO) + 11)) = 1 
1 

-{(1000) + 1001)) - (1010) + lol l ) )+ 
2/8 

i(l100) + 1101)) - i(l110) + 1111))). 
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Now we reverse the qubits, to get the final wave function, 

1 
-{(lOOO) + 1100)) - (1010) + IllO))+ 2/8 

(5.17) 

i(lO0l) + 1101)) - i ( l0l l )  + 1111))). 

The operation “reverse the qubit” means, for example, for the case of 
three qubits, that l i j k )  + Ikji). Actually, the quantum-mechanical op- 
eration “reverse the qubit” is not applied. Instead of this, one measures 
the state of register X after the Fourier transform (see Chapter 4), and 
reads the result of measurement in the opposite order. 

In decimal notation, (5.17) is the state, 

(5.18) 

i(11) + 15)) - 4 3 )  + 17))). 

It is easy to check that for 1.) = 12) the expression (5.18) is equal 
to (4.4). So, the group of operators (5.12) performs a discrete Fourier 
transform ! 

Note that for L qubits the discrete Fourier transform requires L op- 
erations A i ,  and [0 + ( L  - l)]L/2 operations, Blk. Thus, the number 
of computational steps is a quadratic function of L. Consequently, this 
algorithm is an efficient one. 



Chapter 6 

Quantum 
Integers 

Factorization of 

The quantum algorithm for finding the period of a periodic function was 
used by Shor [19] to factorized an integer. We shall describe this al- 
gorithm using as an example, the number, N = 30. First, we select 
randomly a number y ,  such that the greatest common divisor of the 
numbers y and N is equal to 1. (It is known that if y (1 < y < N) 
is selected randomly, the probability that two numbers have the great- 
est common divisor of one unit, is greater than 1/ log, N [39]. Euclid’s 
efficient algorithm for finding the greatest common divisor is described 
below.) Now we describe Shor’s method of factoring the number N. Let 
us consider the periodic function, 

f ( x )  = y x  (modN), x = 0, 1, 2 ,3 ,  ..., (6.1) 

where a (mod b)  is the remainder of a/b .  For N = 30, let us randomly 
select y = 11. Then, we have from (6.1), 

f ( 0 )  = 1 (mod 30) = 1, (6.2) 

f ( 1 )  = 11 (mod30) = 11, 

f(2) = 112 (mod30) = 1, 

36 
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as 112 = 121 = 4 . 3 0  + 1. Next, 

f(3) = 113 (mod30) = 11, (113 = 1331 = 4 4 .  30+ I l ) ,  (6.3) 

f(4) = 114 (mod30) = 1, (114 = 14641 = 488.30 + 1). 

The period T of the function f ( x )  is, obviously, T = 2. This period can 
be found by the method described in Chapter 4. To find a factor of the 
number N, we compute z = y T / 2  = 11’ = 11. The greatest common 
divisor of ( z  + 1, N) = (12, 30) is 6. The greatest common divisor of 
(z - 1, N )  = (10,30) is 10. Both of the numbers 10 and 6 are factors 
of 30. This is the way to find two factors of a number N if the quantum 
algorithm provides the period T for the function f (x). 

This factoring method fails sometimes. For example, it happens if 
T is an odd number. It was shown, however, that if y was selected 
randomly, the probability of failure is small [39]. In particular, in the 
considered above case, N = 30, the function f ( x )  = y* (mod30) has 
an even period for any y coprime to 30 (1 < y < 30), 

T = 2, y = 11, 19, 29, (6.4) 

T = 4, y = 7, 13, 17, 23. 

In our calculations, we must find the greatest common divisor of the 
two numbers, N and y .  This can be done efficiently using the Euclid’s 
algorithm. For example, for the numbers 12 and 30, we divide 12 into 
30, 

30 = 2 . 1 2  + 6. (6.5) 

Then, we divide the remainder 6 into the quotient 12: = 2. (If the 
remainder is not equal to zero, we repeat division until the remainder is 
zero.) The last non-zero remainder (in our example, 6) is the greatest 
common divisor. 



Chapter 7 

Logic Gates 

Any transformation of bits or qubits can be implemented in hardware 
using a combination of the simplest logic gates. For a digital computer, 
the simplest logic gate is the single-bit NOT-gate or N-gate (the gate with 
one input bit). The truth table for initial (input) ai and final (output) b,+ 
values is given in Tbl. 7.1. This gate changes the value of a bit, 

b, = ai, ai = 0 ,  1. (7.1) 

If we use current circuits, the N-gate can be implemented as shown in 
Fig. 7.1. In Fig. 7.1, the switch in the upper circuit is closed (b f  = 1) 
when there is no current in the lower circuit (ai = 0). If ai = 1, i.e. the 
switch in the lower circuit is closed, the magnetic field of the coil opens 
the switch of the upper circuit, and b f  = 0. 

The simplest two-bit gates correspond to the Boolean operations of 
multiplication and addition. (The truth table for Boolean multiplication 

Table 7.1 : The truth table for the NOT-gate. 

38 
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Figure 7.1: The physical implementation of the NOT-gate. 

is presented in Tbl. 7.2.) This table corresponds to the truth table of the 
logical operation “AND” if we consider 0 as “false”, and 1 as “true”. 
That is why this logic gate is called the “AND-gate”. 

The truth table for the second two-bit gate (the Boolean addition) 
corresponds to the logical operation “OR” (Tbl. 7.3). In figures 7.2 and 
7.3 we give an implementation of the gates represented in tables 7.2 and 
7.3. 

For the AND-gate, the switches of the upper circuit are closed if they 
are attracted by the adjacent coils. So, the current in the upper circuit 
( c f  = 1) is possible only if there is a current in both lower circuits 
(ai = bi = 1). For the OR-gate, a current in the lower segment (c f  = 1) 
is possible if either of the switches ai or bi, or both switches are closed 
(ai = 1, or bi = 1, or ai = bi = 1). 

With combinations of these three simple gates, we can construct 
any truth table. For example, assume that we want the EXCLUSIVE-OR 
(XOR)-gate with the truth table (7.4). This operation is designated by @, 
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Table 7.2: The truth table for the Boolean multiplication (AND-gate). 

0 

Table 7.3: The truth table for Boolean addition (OR-gate). 

I ai I bi II ~f I 
l o  10 I10 I 
l o  I 1  111 I 

Table 7.4: The truth table for the EXCLUSIVE-OR-gate. 
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Figure 7.2: The physical implementation of the AND-gate. 

and corresponds to sum mod 2. It provides a unit value for the output, 
cf = 1, if only one of the input values is equal to one unit. The output 
is zero for all other cases. 

To design the XOR-gate, we can write the truth table for the XOR- 
gate in terms of Boolean operations. The two digital rows in Tbl. 7.4 
provide c f  = 1: the second row with ai = 0, bi = 1, and the third row 
with ai = 1, bi = 0. The second row corresponds to the product &bj ,  
and the third one corresponds to a;&. The final expression is, 

For example, if ai = 1 and bi = 0, we have, 
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Figure 7.3: The physical implementation of the OR-gate. 
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Expression (7.3) can be realized using N, OR and AND - gates. If the 
switch “h” in Fig. 3.2 is closed, and one substitutes A for ai and B for 
bi, the current in the lower circuit will implement the truth table of the 
XOR-gate. 



Chapter 8 

Implementation of Logic 
Gates Using Transistors 

We describe here the main ideas of the semiconductor logic gates, fol- 
lowing [46]. In conventional computers, transistors are used as the 
switches. Transistors are made using semiconductors, usually silicon, 
with a small amount of impurities. If the added impurity introduces 
a surplus of electrons (n-type semiconductor), we have additional free 
electrons in the conduction band (an allowed energy region for electrons 
in which a current can flow). If the added impurity introduces a defi- 
ciency of electrons (p-type semiconductor), we get additional “holes” in 
the valence band which behave like positive charges. If we put n-type 
and p-type semiconductor slices together, electrons can flow only from 
the n-type to the p-type semiconductor. So, the system of two slices con- 
ducts current only if the negative terminal of the battery is connected to 
the n-type semiconductor (Fig. 8.1). Silicon is a classical example of 
semiconductor. It has four valence electrons. Assume, that we add to 
silicon a small amount of phosphorus which has five valence electrons. 
In a silicon crystal lattice four of these electrons hold the atom in place 
in the lattice: each impurity atom bonds four silicon atoms. The fifth 
electron of phosphorus is free to move. So, we have a surplus of free 
electrons. This is an n-type semiconductor. If we add boron which 
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p-type 1 n-type 

Figure 8.1: The system of n-type and p-type semiconductor slices con- 
ducts a current only if the negative terminal of the battery is connected 
to the n-type semiconductor. 

has 3 valence electrons it captures an additional electron. This impu- 
rity atom bonds to four silicon atoms, but now one has a deficiency of 
electrons. This is a p-type semiconductor. In a pure silicon, the density 
of electrons in conduction band, n,, is equal to the density of holes in 
the valence band, n p .  Both n, and n p  depend on the temperature. (The 
product n,np does not change when we add an impurity.) 

Assume that we have a p-type semiconductor and a conducting layer, 
which is separated from the p-semiconductor by a thin layer of an oxide 
insulator. In Fig. 8.2, “p” is the p-type silicon, “c” is a conductor, “n” 
indicates the n-type semiconductors. If we apply a positive voltage to 
the conducting layer “c”, electrons from the n-type semiconductor are 
attracted to the bottom of the oxide insulator. If we apply a voltage be- 
tween the n-type semiconductors, we will get a current through the layer 
formed by these electrons. (These electrons are shown in Fig. 8.2 as a 
vertical hashed region.) So, we have a switch which can be operated by 
the voltage +V instead of the magnetic field of the adjacent coil. The 
n-type semiconductors in this transistor are called the “source” and the 
“drain,” the conductor is called the “gate”. This whole system is known 
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+ ” ?  I insulator 

Figure 8.2: Metal-oxide-semiconductor-field-effect-transistor 
(MOSFET); p is a p-type semiconductor, n are the n-type semi- 
conductors, c is the conductor. Symbol * means a connection to the 
ground. 

as a MOSFET (metal-oxide-semiconductor-field-effect-transistor). The 
current between the source and the drain will flow if the voltage be- 
tween the gate and the source exceeds a critical value. The conventional 
MOSFET symbol is shown in Fig. 8.3. The potential difference between 
the drain and the source is positive (Vd > V,). The potential difference 
between the gate and the source, V, - V,, as was mentioned above, must 
exceed some critical value to open the gate. Typically, Vd - V, - 5 V and 
the critical value V, - V, is approximately 0.2(Vd - V,). (We describe 
here only the n-type MOSFET. There also exists a p-type MOSFET.) 

The simple scheme of the transistor NOT-gate is shown in Fig. 8.4. 
Here +Vd, is the voltage between the drain and the source, R is the 
resistor. We suppose that the resistance of the transistor is much less 
than the resistance of the resistor. If the voltage between the gate and the 
source, V,,, exceeds the critical value, (ai = l), current flows through 
the transistor, and the voltage of the output (i.e. the potential difference 
between the point “output” and the ground) is approximately equal to 
zero (b f  = 0). In the opposite case (ai = 0), the transistor does not 
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gate __ i 
source 

Figure 8.3: The conventional MOSFET symbol. 

+- output 

Figure 8.4: The transistor NOT-gate. 
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Table 8.1: The truth table for the NAND-gate. 

0 

1 0 0  

0 

Table 8.2: The truth table for the NOR-gate 

conduct current, and the potential difference between the output and the 
ground is approximately equal to V,, (b f  = 1). 

Instead of AND and OR - gates, one can easily design transistor NOT 
A N D  (NAND) and NOT OR (NOR) - gates using a couple of transistors. 
A truth table for the NAND-gate is shown in Tbl. 8.1. Fig. 8.5 shows a 
transistor implementation of the NAND-gate. As before, ai = 1 means 
that the potential of the gate (Vg,) exceeds the critical value, and the 
transistor is conducting current. If ai = 1, and bi = 1,  both transistors 
are open, and, consequently, cf’ = 0 (the potential difference between 
the points cf and the ground is very small). For any other case, either 
both transistors are closed or one of them is closed, cf’ = 1.  

The truth table for the NOR-gate is given in Tbl. 8.2. The transistor 
realization of the NOR-gate is shown in Fig. 8.6. If ai = bi = 0 in 
Fig. 8.6, i.e. the potential at the points ai and bi is less than the critical 
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Figure 8.5: The transistor NAND-gate. 

I 

Figure 8.6: The transistor NOR-gate. 
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value, then both transistors are closed, and c,f = 1, i.e. the potential dif- 
ference between the point cf and the source (ground) is approximately 
equal to Vd,T. In any other case, either both transistors or one of them are 
open, and c f  = 0. 

Until now we considered the implementation of logic gates which 
use different bits for the initial and the final values. For example, in 
Chapter 7, when considering the N-gate (Fig. 7.1), we have two bits, 
“a” and “b’. The N-gate transforms the value of bit “a” (which we call 
the initial value, ai) into the value of bit “b” (which we call the final 
value, b f ) .  In Fig. 7.1, one electric circuit corresponds to the bit “a”. 
The other circuit corresponds to the bit “b”. In what follows we consider 
logic gates for which the same circuit corresponds to “a” and “b”; and 
“b” is the transformed value of “a”. These gates are widely used and 
are important in the theory of quantum computation. For example, the 
N-gate can operate with only one bit, “a”. So, the final value of this bit, 
a f ,  is equal to the complement of the initial value, a f  = &. 



Chapter 9 

Reversible Logic Gates 

A logic gate is called reversible if one can reconstruct the input when 
one knows the output. For example, the N-gate is reversible. Indeed, 
if the output a f  = 0, we know that the input ai = 1, and vice versa 
(see Tbl. 7.1, where we should put af instead of b f ) .  The AND-gate is 
obviously irreversible (see Tbl. 7.2, where we should put a f  instead of 
cf). Indeed, if the output a f  = 0, we can not say if the pair (ai, bi) 
is equal to (O,O), (O,l), or (1,O). The same is true for OR, XOR, and 
NOR-gates. Both classical and quantum mechanics in the Hamiltonian 
formulation describe only reversible processes. So a computer based on 
quantum-mechanical logic must involve only reversible logic gates. In 
Tbl. 9.1 we show the truth table for the two-bit CONTROL-NOT (CN) 
reversible gate. The first bit a is called the control bit. The control bit 
does not change its value after the action of the cN-gate. The second 
bit b is called the target bit. The CN-gate changes the value of the target 
bit if the value of the control bit is equal to one. We can write for the 
CN-gate, 

or 
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Table 9.1: The truth table for the reversible CN-gate. 

bi I b f 

Figure 9.1: The conventional graph for the CN-gate. 

It is obvious that information is not lost after the application of the CN- 
gate: if we know the output a f  and b,, we can determine the input ai 
and bi. The conventional graph for the CN-gate is shown in Fig. 9.1. The 
arrow with the circle in Fig. 9.1 shows that the value of b j  depends on 
the value ai = a f .  In Tbl. 9.2, we show the truth table for the three-bit 
reversible gate - the CONTROL-CONTROL-NOT (CCN)-gate. The CCN- 
gate includes two control bits, a and b, which do not change their values, 
and a target bit c which changes its value only if ai = bi = 1. The graph 
for the cm-gate  is shown in Fig. 9.2. The ccwgate is a universal gate 
[14]. If we put ai = bi = 1, then cf  = Ci, and we have the N-gate. If 
we put ai = 1, then we get a truth table shown in Tbl. 9.3. One can see 
that b f  = bi, and cf  = bi @ ci. So we get the CN-gate. If ci = 0, we 
obtain the truth table represented in Tbl. 9.4. One can see from Tbl. 9.4 
that, 

Cj = aibi, (9.3) 
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Table 9.2: The truth table for the CCN-gate. 

ci Cf 

Figure 9.2: The graph for the CCN-gate. 
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I I n I I 

Table 9.3: The truth table for the CCN-gate, if ai = 1. 

Table 9.4: The truth table for the CcN-gate, if ci = 0. 
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1 0 1 1  

( a  ( b  ( c  ( d  

Table 9.5: The consequent values of bits for the operations (9.4). 

so we get the AND-gate. 
Using a combination of two CCN-gates and two CN-gates, we can 

create an adder. Indeed, assume that a and b are the bits to be added, 
and c is the carry-over. Using one additional bit d,  we can apply four 
operations to make an adder, 

d = 0,  CCN(abd), CN(ab), CCN(bcd), CN(bc). (9.4) 

At the first step, we set the value of d = 0. At the second step, we apply 
the CCN-gate to the bits a ,  b, and d (a and b are the control bits, d is 
the target unit). Then, we apply the CN-gate to bits a and b (a is the 
control unit, b is the target unit). Then, we apply the CCN-gate to b, c, 
and d. Finally, we apply the CN-gate to b and c. As a result, the value 
of the bit c is equal to the sum of bits, and the value of a bit d is the new 
carry-over. 

Let us check, for example, that the sequence of the gates (9.4) pro- 
vides the adder for the initial values: a = b = c = 1. The consequent 
values of bits are given in Tbl. 9.5. In Tbl. 9.5, the second row shows the 
initial values of bits. After the action of the ccN(abd)-gate, the value of 
the target bit d changes because a = b = 1.  The CN-gate CN(ab) 
changes the value of b, because a = 1. The ccN(bcd)-gate does not 
change the values of the bits, because one of the control bits b = 0. The 
cN(bc)-gate does not influence the value of bits because the value of the 
control bit b = 0. As a result, we have the correct value of the sum and 
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Figure 9.3: Graph for the sequence of operations (9.4). 

ai 

Figure 9.4: The graph for the F-gate. 

the carry-over: c = 1, d = 1. We can sketch the sequence (9.4) using 
the graph shown in Fig. 9.3. Four arrows in the graph show the action 
of the CN and CCN - gates. 

Finally, in Tbl. 9.6 and Fig. 9.4 we show the truth table and the graph 
for the well-known three-bit reversible FREDKIN (F)-gate. The F-gate 
can be called the CONTROL-EXCHANGE-gate. The control bit ai does 
not change its value, and the target bits bi and ci exchange their values 
if ai = 1. The F-gate is also a universal gate and can be used to achieve 
any logical operation [47]. For example, putting ci = 0, we get the truth 
table shown in Tbl. 9.7. One can see from Tbl. 9.7 that the value of c , ~  
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0 I 1  l o  I IO I 1  l o  I 

Table 9.6: The truth table for the F-gate. 

if aj  = 0 

if ai = 1 

Table 9.7: The truth table for the F-gate (if ci = 0). 
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is equal to, 
Cf’ = Uibi, 

so we have the AND-gate. 

(9.5) 



Chapter 10 

Quantum Logic Gates 

Unlike the digital logic gates, quantum logic gates generally act on a su- 
perposition of digital states. Quantum logic gates can be represented by 
operators or matrices. Consider the matrix A with matrix elements Aik. 
An adjoint matrix At is defined as a matrix with the matrix elements, 

where “star” means the complex conjugate. For example, for the matri- 
ces, 

A = ( :  b). B = ( i  0 -i o ) ,  

the adjoint matrices are, 

At=(:i ii), B t = ( i  0 -i o ) ,  

(10.2) 

(10.3) 

as 
(At)lz = A;,  = -i, (At)21 = AT2 = -i, 

(Bt)21 = BT2 = i. (Bt)12 = B;, = -i, 

Both matrices, A and B ,  have special properties. For matrix B ,  we 
have Bt = B .  Matrices which are equal to their adjoints are called 
Hermitian. Hermitian matrices represent physical quantities which can 
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be measured experimentally, i.e. energy, projection of spin (internal 
angular momentum), projection of magnetic moment, etc. In particular, 
the matrix (1/2)B describes the y-component of the electron’s or the 
proton’s spins. 

For both matrices A and B ,  we have the important equalities, 

A ~ A  = A A ~  = E ,  B ~ B  = B B ~  = E (10.4) 

where E is the unit matrix, 

.=(; ;). (10.5) 

One can check (10.4) using the definition that the product of any two 
matrices A and B is, 

(AB)ik = AinBnk3 (10.6) 

where a summation is assumed over the repeated index n. Thus, 

(AtA)l l  = A ~ , A I ~  + A12A21 = 0 . 0  + (-i). i = 1, (10.7) 

(AtA)22 = AllA12 + Al2A22 = (-i) . i + 0 . 0  = 1, 

(AtA)i2 = AilAi2 + AI2A22 = 0,  

(AtA)21 = AllA11 + Ai2A21 = 0. 

The matrices which satisfy equation (10.4) are called unitary matrices. 
The time-evolution of quantum-mechanical systems is represented by a 
unitary matrix. So, quantum logic gates can be represented by unitary 
matrices (operators). 

Consider, for example, the quantum N-gate. It transforms the ground 
state 10) into the excited state Il), and vice versa, similar to the digital 
N-gate. For the superpositional state, the N-gate provides the transfor- 
mation, 

N*(colO) +Clll)) =cOll)+cl10). (10.8) 

Here co and c1 are the complex amplitudes of the states. For the initial 
state Q = (~010) + c1 Il)), Ic0l2 is the probability of finding the system 
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in the state lo), and Ic1 l2 is the probability of finding the system in the 
state 11). After action of the N-gate, lc0l2 is the probability of finding the 
system in the state Il), and Icl l 2  is the probability of finding the system 
in the state 10). Of course, lc0l2 + lc1I2 = 1. 

If we represent the states 10) and 11) in the form of a column matrix, 

then the N-gate can be represented by the matrix, 

N = ( ;  b)  

(10.9) 

(10.10) 

Note, that this matrix is unitary and Hermitian. (The matrix (1/2)N de- 
scribes the x-component of the electron’s or proton’s spins.) One can 
check that, 

N a ! = P ,  N B = a .  (10.11) 

Indeed, for any square matrix R and column matrix p, Rp is the column 
matrix with matrix elements, 

For example, 

( N c x ) ~  = N l l ~ t l  + Nl2a2 = 0 + 0 = 0, (10.13) 

( N a ) 2  = N2lal + N22a2 = 1 . 1 + 0 = 1. 

The equations (10.13) are equivalent to the first equation in (lO.ll), as 
= 0, and 82 = 1. 
Instead of square matrices like (lO.lO), we can represent a quantum 

gate as a sum of the so-called Hubbard operators, X i k  (i, k = 1, 2). The 
operator X i k  is the square matrix which has the unit matrix element at 
the intersection of the i-th row and the k-th column. All other matrix 
elements are equal to zero. For example, 

(10.14) 
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These matrices are convenient for multiplication, because they satisfy 
the simple rule, 

X i k X m n  = x i " 6 k m ,  ( 1 0.1 5) 

where 

For example, 
(10.16) 

and so on. In terms of Hubbard operators the N-gate can be represented 
as 3 

N = X l 2  + X 2 l .  (10.17) 

x 12 x 21 = x",  x'2x" = 0,  

One can also represent a quantum gate in Dirac notation. In this 
notation, the matrix X i k  has the form, 

X i k  = Ii - l ) ( k  - 11, (1 0.1 8) 

So, the operator X" corresponds to 10) (01. The action of the operator 
(10.18) can be found using the simple rule, 

( i l k )  = 6 i k .  (10.19) 

According to this rule, multiplication of a square matrix l i ) (k l  and a 
matrix-column In) is given by the expression, 

Multiplication of the square matrices is given by the expression, 

In Dirac notation, we have for the N-gate, 
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The first term in (10.22) is responsible for the transformation 11) + lo), 
and the second term is responsible for the inverse transformation: 10) + 
I l ) ,  

NI1) = l O ) ( l l l )  + Il)(Oll) = lo), (10.23) 

N I O )  = lO)(llO) + I l ) ( O l O )  = 11). 

It is easy to check that the N operator is unitary. Indeed, one has in Dirac 
notation, 

In (10.24) we used that the operator l i ) ( j l  is adjoint to the operator 
l j 1 (i I. 



Chapter 11 

Two and Three Qubit 
Quantum Logic Gates 

The quantum CONTROL-NOT (CN) logic gate can be described by the 
following operator, 

The CN-gate is a two-qubit operator where the first qubit is the control 
and the second qubit is the target. If the control qubit is in the ground 
state lo), the target qubit does not change its value after the action of 
the CN-gate. This situation is described by the first two terms in (1 1.1). 
In the opposite case, the target qubit changes its value. This case corre- 
sponds to the third and forth terms in (1 1.. 1). The CN operator, like the 
N operator, is unitary and Hermitian, 

I l O ) ( l O l  + 111)(111 = E .  

In decimal notation, the CN-gate can be written as, 
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where 
100) -+ lo), 101) ++ Il), 

110) -+ 12), 111) +. 13). 

The matrix form of the CN-gate in decimal notation is, 

1 0 0 0  

0 0 0 1  
0 0 1 0  

C N = (  0 1 0 0  ) 
(11.4) 

The matrix element (CN)ik corresponds to the term ]i)(k], where we 
count i and k from zero in (11.4). Let us write lo), Il), 12), (3) as the 
column-matrices, 

Then, the action of matrix (1 1.4) on any column-matrix in (1 1.5) cor- 
responds to the action of the operator (1 1.3) on the same state. For 
example, 

13)(212) = 13). 

In matrix notation, the i-th element of ( m y )  is given by the expression, 

So, it follows from (1 1.7) that, 

CNy = 6, (11.8) 

which corresponds to (1 1.6) in the matrix notation. 
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0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 0  
0 0 0 1 0 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 0 1 0  
0 0 0 0 0 1 0 0  

The three qubit F-gate can be described by the operator, 

F = 1000) (0001 + 1001) (001 I + lOlO)(OlOl+ (11.9) 

~ O l l ) ( O l l ~  + ~100)(100~ + IlOl)(llOl+ 

~ l l O ) ( l O l ~  + 1111)(1111. 

The left qubit in (1 1.9) is the control qubit. If the control qubit is in the 
ground state lo), the two target qubits do not change their states. This 
situation is described by first four terms in (1 1.9). The second four terms 
in (1 1.9) describe the opposite case, with the control qubit in the excited 
state 11) and the target qubits exchanging their states. For example, 

F1001) = ~OOl)(OOl(OOl) = IOOl), (1 1.10) 

and the state of the qubits does not change. At the same time, 

F1101) = ~110)(101~101) = I l l O ) ,  (1 1.1 1) 

and the target qubits exchange their states. In decimal notation, the F 
gate can be written as, 

In matrix representation (1 1.12) has the form, 

(11.13) 
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This F-gate operator is also unitary and Hermitian. Sometimes it is con- 
venient to represent logic gates in terms of creation (at) and annihilation 
(a)  operators. These operators have the properties, 

atlo) = Il), U t l l )  = 0, (1 1.14) 

a10) = 0, all) = 10). 

The creation operator at  transforms the ground state 10) into the excited 
state 11). The annihilation operator a transforms the excited state 11) 
into the ground state 10). In Dirac notation, we have, 

at = I l ) ( O l ,  a = l O ) ( l l .  (11.15) 

We assume that the operators u and at  act only on the left qubit; the 
operators b and bt act on the central qubit; and the operators c and ct 
act on the right qubit. Then, the F-gate can be represented as, 

F = E + atu(btc  + be' - btb - ctc + 2b'bc'c). (1 1.16) 

Let us check, as an example, the action of (1 1.16) on the state (001). We 
have, 

F1001) = E1001) = IOOl) ,  (11.17) 

because a 10) = 0, and only the first term E in (1 1.16) gives a nonzero 
result. At the same time, 

FJ101) = EJ101) +atabtc)lOl) -Utactc]lOl) = (11.18) 

1101) + 1110) - 1101) = 1110). 

In this case, only three terms in (1 1.16) produce nonzero results. 
Finally, we consider here a three-qubit CCN-gate, 

1011) (01 1 I + 1100) (1001 + 1101) (101 I+ 
1110)(1111 + 1111)(1101. 
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Two left qubits in (1 1.19) are the control qubits. The CCN-gate changes 
the state of the right (target) qubit if both control qubits are in the excited 
state (the last two terms in (11.19)). It is useful to write the CCN-gate 
in decimal and in matrix representations. In the decimal representation, 
using Dirac notation, the operator CCN has the form, 

In this decimal matrix representation, the operator CCN has the follow- 
ing matrix elements, 

(CCN)kk = 1, 
(CCN)67 = (CCN)76 = 1, 
(CCN)i, = 0, otherwise. 

if k = 0, I ,  2, 3,4,  5 
(1 1.21) 



Chapter 12 

One-Qubit Rotation 

Here we shall consider how to implement the simplest logic gate, the 
N-gate, using a two level quantum system. There exists a great number 
of quantum systems which can be treated approximately as having only 
two-levels. We shall consider one of them - the proton spin, I = 1/2, 
in a uniform magnetic field 5 which points in the positive z-direction. 

The Schrodinger equation for this system can be written as, 

i h 4  = I-W, (12.1) 

where II/ is the wave function, 

\I, = COlO) + Clll). 

lcol + l C d 2  = 1. 

The amplitudes co and c1 satisfy the normalization condition, 

(12.2) 2 

The Hamiltonian 'FI of the system is, 

IFI = - y m w  = -hmorZ, (12.3) 

where wg = y B is the eigenfrequency of the system; y is the proton 
gyromagnetic ratio; I z  is the operator which describes the z-component 
of the spin 1/2, 

1 

(12.4) 
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In matrix representation, we have for the operator Zz, 

1 1  
z z = 2 ( o  -9> (12.5) 

The energy of the ground state 10) is equal to -Awo/2. The energy of 
the excited state is Awo/2. 

At time t ,  the general solution of the Schrodinger equation (12.1) 
can be written as, 

Substituting (12.6) into (12. I), we obtain, 

(12.7) 

(lO)(Ol - I~)(~l~(COlO) + C l l l ) ) .  
A 0 0  -- 

2 
From (12.7), we can derive two ordinary differential equations for the 
amplitudes co and c1, 

(12.8) 

The solution of these equations is, 

We now find the quantum-mechanical averages of the x -, y -, and z 
- components of the proton spin described by (12.9). These values can 
be measured in experiments in which many proton spins are prepared in 
the same state at t = 0. The operators Z x  and Z Y  are, 
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The average value ( A )  of any operator A (physical observable) can be 
found as, 

( A )  = Q'AQ. (12.11) 

In our case, we have the wave function, 

~ ( t )  = co(0)eiw()f/210) + c1 (0)e-iY)f/2 11). (12.12) 

First, we calculate the action of the operator Zx on the wave function 
Q ( t > 7  

(12.13) 

Next we calculate the time-dependent average value ( I " )  ( t ) ,  

( I " ) @ )  = Q + ( t ) z X Q ( t )  = (12.14) 

We can significantly simplify (12.14). Let us write the complex number 

c~(o)c;(o) = ae'v, (12.15) 
co(o)c;(o> as, 

where a is the modulus and q is the phase of the complex number. Then, 
the expression (12.14) can be written in the form, 

( I X ) @ )  = a cos(wot + q). (1 2.16) 
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--a sin(o0t + q). 
Finally, the average value of ( Zz) ( t )  is given by the expression, 

( Z " ( t )  = Q + ( t ) z z Q ( t )  = (12.18) 

1 
2 -(lco(0>l2 - ICl(0)l2). 

As one can see from (12.18) the average value ( Z z )  ( t )  does not de- 
pend on t .  Note that the length of the average spin does not change in 
the process of time evolution, 
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( I " ) 2  + ( / Y ) 2  = a2. 

In (12.19) the normalization condition was used: I c o ( O ) ~ ~ + I C ~ ( O ) ~ ~  = 1. 
The expressions for (I')(t), (IY)(t), and ( l z ) ( t )  describe the precession 
of average spin vector (7) ( t )  around the direction of the magnetic field. 
The magnitude of the vector (?)(t) is 1/2; the z-component of the vector 
does not change, and the transverse component rotates in the clockwise 
direction viewed from the top (+z) with the frequency wg. 

Let us consider what happens if one applies a transverse circularly 
polarized magnetic field which is resonant with the precession of the 
vector (f)(t). (That is, it has a frequency equal to the precession fre- 
quency.) This field has the form, 

BX = hcoswt, BY = -hsinwt 

In this case, the Hamiltonian of the system, 

can be written as, 

In (12.22), the following notation is introduced, 

(12.20) 

(12.21) 

(12.22) 

(12.23) 

I -  = l' - i l y  = Il)(Ol. 

Substituting (12.23) into (12.22), one can obtain the following Hamilto- 
nian, 

(12.24) 
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where Q = y h is the amplitude of the resonant field measured in fre- 
quency units. The frequency R is called the Rabi frequency. The Rabi 
frequency describes transitions between the states 10) and I l),  under the 
action of the resonant field. The characteristic time of these transitions 
t = n/ Q is usually much longer than the period of precession, 2n/oo. 
Substituting the Hamiltonian (12.24) and the wave function (12.6) into 
the Schrodinger equation (12. l), we derive the equations for co and c1 , 

(1 2.25) 

These equations involve the time-periodic coefficients, exp(fiwt). 
To derive equations with constant coefficients, we use the following sub- 
stitution, 

(12.26) co = coe , 

CI = cle . 

After substituting (12.26) into (12.25), we obtain equations for cb and 

(12.27) 

I iwt /2 

I - io t /2  

c; > 

1 
2 

1 
2 

. . I  lco = - [ (w  - w0)C; - Q C ’ , ] ,  

it; = -[-(w - wo)c’, - Qch]. 

At the resonant condition, w = wg, we have from (12.27), 

1 
2 

. . I  
lco = --Rc;, 

1 ,  it; = --Rco. 
2 

(12.28) 
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The transformation (12.26) is equivalent to the transition to a sys- 
tem of coordinates which rotates with the resonant magnetic field. In 
this system of coordinates, the circularly polarized magnetic field be- 
comes a constant transverse field. Also, in this system of coordinates, 
precession around z-axis is absent. So, we effectively ”turn off’ the 
permanent magnetic field which is pointed in z-direction. Thus, in this 
rotating system of coordinates, we have effectively only the transverse 
constant magnetic field with amplitude h = Q / y .  Next, we shall omit 
the “prime” in the expressions for c;, and c;. The general solution of 
(12.28) can be written as, 

at at 
2 2 

co(t) = co(0) cos - + icl(0) sin -, (12.29) 

Qt Qt 

2 2 
cI ( t )  = ico(0) sin - + q ( 0 )  cos -. 

Let us assume that at t = 0, the spin is in the ground state, 

co(0) = 1 ,  c, (0) = 0. (12.30) 

Substituting (12.30) into (12.29), we have, 

co(t) = cos -, Qt (12.31) 
2 

at 
q ( t )  = i sin -. 

2 
If we take the duration of the external resonant field, t l  , to be equal to, 

n 
t 1 =  2, ( 1 2.3 2) 

then we have from (12.31), 

co(tl) = 0, cl(t1) = i. (12.33a) 

It follows from (1 2.33a) that, 
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Thus, a pulse of a resonant magnetic field with a duration of n/ S2 drives 
the system from the ground state to the excited state. Such a pulse is 
called a n-pulse. Conversely, if a spin is initially in the excited state, 

co(0) = 0, q ( 0 )  = 1, (1 2.344 

then after the action of a n-pulse we have, 

co(t1) = i, Cl(t1) = 0. (12.34b) 

So, a n-pulse drives the spin into the ground state. The n-pulse works 
as a quantum N-operator - it changes the state of the system from 10) 
to 11) or from 11) to 10). (The common phase factor, i = exp(in/2) is 
not significant for the wave function, because this factor does not affect 
any observable value.) If we apply a pulse with a different duration, 
we can drive the quantum system into a superpositional state, creating a 
so-called one-qubit rotation. For example, with tl = n/2S2 (n/2-pulse) 
and the initial conditions (12.30), we get from (12.31), 

n n 
co(t1) = cos -, cl(tl) = i sin -, (1 2.35) 

4 4 

It follows from (12.35) that a n/2-pulse drives the system into a su- 
perposition with equal weights of the ground and the excited states. 
Thus, if we measure the state of the system, we get the state 10) or the 
state 11) with equal probability, 1/2. The same result is obtained when a 
n/2-pulse drives the system from a pure excited state (initial conditions 
(12.344). 

Finally, we consider change of the average value of a spin compo- 
nents under the action of a resonant field. Repeating previous calcula- 
tions we have, 

1 
( I X )  = ;<c;c1 + c;co>, (12.36) 
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1 
( I Z )  = p o l 2  - IC1l2). 

If the system is initially in the ground state and its dynamics is described 
by (12.31), then the evolution of the average values of the spin compo- 
nents is given by the expressions, 

( I X )  = o ,  (12.37) 

1 
2 
1 
2 

( I Y ) ( t )  = - s i n a t ,  

( IZ)( t )  = - cos at. 
Eqs (12.37) describe the precession of the average spin around the x- 
axis, in the rotating system of coordinates. Initially, at t = 0, the 
“average spin” points in the positive z-direction: ( I z )  = 1/2. The 
z-component of the average spin decreases, and the y-component in- 
creases. At any moment, ( I Y ) 2  + (Iz)’ = 1/4. After the action of a 
n/2-pulse (at = n/2), we have, 

1 ( P )  = - 
2’  ( I Z )  = 0,  (12.38) 

i.e. the average spin points in the positive y-direction (A n/2-pulse 
drives the average spin in the transversal plane.) After the action of a 
n -pulse, we have, 

( I Y )  = 0,  ( I Z )  = --, (12.39) 
1 
2 

i.e. the average spin then points in the negative z-direction. 



Chapter 13 

A j - Transformation 

Here we discuss how to realize the operator, A;, 

One should recall that the operators A j  and Blkr  

e ie j k  1 1 ,i 1 k  ) ( 1 ,, lk 1, 

are necessary to achieve the discrete Fourier transform (see Chapter 5). 
(The operator A,, acts only on the j-th qubit and the operator B;k acts 
only on the j-th and k-th qubits.) 

Action of the operator A j  on the state 10,) produces the state, 

The same operator transforms the state 11) into, 

(13.3) 

(13.4) 

78 
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Now we will find electromagnetic pulses which physically imple- 
ment the transformations (13.3) and (13.4). We introduce the rotating 
reference frame and assume that the rotating magnetic field has a phase 
shift (o, relative to the reference frame, 

B, = h cos(wt + (o), B, = -h sin(wt + q). (13.5) 

Then, we have for B+ and B- ,  

Correspondingly, the second term in the Hamiltonian (12.24) transforms 

For (o # 0, the substitution (12.26) is equivalent to a transition to the 
rotating reference frame, which is not connected to the applied electro- 
magnetic field, but has the same angular velocity: the direction of the 
rotating magnetic field makes an angle q with respect to the x-direction 
of the rotating frame. Instead of (12.28) we have the following equa- 
tions, 

1 
i& = --Qe'pc/l, (13.8) 

2 
1 

zcl = --Qe-'pcb. 
2 

Dropping the superscript "prime", we get the following solution of 
(13.81, 

Qt Rt 
co(t> = Q(O) cos - + icl(O)e''P sin -, (13.9) 

2 2 
at Rt 

cl(t) = c ~ ( o )  cos - + ico(0)e-ip sin -. 
2 2 

If we choose fit = n / 2  (n/2-pulse), and the phase q = n/2,  we shall 
have from (13.9), 

. . I  

(13.10) 
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1 
C l ( t )  = --[CI(O) + CO(0)l. 2/2 

If the system is initially in the ground state (co(0) = 1, c1 (0) = 0), then, 
after the action of the pulse we have from (13. lo), 

1 1 
co = - (13.11) 

A' cl=z' 
If the system is initially in the excited state (co(0) = 0, c1 (0) = l),  then, 
after the action of this pulse we have, 

(13.12) 

Thus, the n/2-pulse with phase n / 2  provides the transformation, 

(13.13) 

The second transformation differs from the action of the operator 
A ,  by a sign. The question arises: How can one overcome this sign dis- 
crepancy? It can be done, for example, if we introduce a third auxiliary 
level, 12,) (see Fig. 13.1). The frequency of transition l0.j) fs )2,), w02, 

is assumed to be different from the frequency of transition I1,j) t, 12,j), 
w12. Let us first apply a 2n-pulse with a frequency w12. If the system 
is initially in the ground state, its state does not change. If the system 
is initially in the excited state, I l , j ) ,  its transformation in general can 
be described by equation (13.9), where co + c2. After the action of a 
2rt-pulse, we have, 

CI = -c1, c2 = 0. (1 3.14) 

1 1 
10) + -((lo) + Il)), 11) + -(I1) - 10)). 2/2 z/z 

Hence a 2n-pulse provides the transformation, 

Now we apply a n/2-pulse, with the frequency, w01, and a phase n/2.  
For an initial ground state, substituting co(0) = 1 ,  q ( 0 )  = 0 into 
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4 4 I * j>  
I I 
I I 
I I 
I I 
I I 
I I 

I 0 0 2  I 0 1 2  
I I 
I I 
I 
I 
I 

Y 

Figure 13.1: The third auxiliary level, 12j), is used to implement the Aj 
transformation. 

(13.10), we get again (13.11). For an initial excited state, substituting 
co(0) = 0, q(0) = -1 into (13.10), we get, 

1 1 
c1= --. 

= z9 .Jz 
(13.16) 

Thus, after the action of two pulses we get the desired transformations 
(13.3), (13.4). 

The action of a 2n-pulse, with frequency w12, on spin j is described 
by the operator, 

I O j  ) (0, I - I 1j ) ( 1.j I. (13.17) 

The action of n/2-pulses, with frequency wo1 and with the n/2 phase 
shift, on the same spin, is described by the operator, 

If we multiply the operator (13.18) by (13.17), we get, 

(13.18) 
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Chapter 14 

B j k  - Transformation 

Now we discuss how to implement the operator Bjk (13.2). Let us, 
for example, have two interacting three-level systems (see Fig. 14.1). 
Assume that the energy of the states of the k-atom depends on the state 
of j-atom: the lower dashed level of the k-atom in Fig. 14.1 corresponds 
to the state 11, ); the upper “dashed level” corresponds to the state lo,,). 
So, instead of one frequency &(lk t) 2 k ) ,  we have two frequencies mi 
and mf (where the subscript corresponds to the state of the neighboring 
atom, j ) .  

Now, let us apply a n-pulse with frequency w: to atom k. If atom 
j is in the ground state, or atom k is in the ground state, or both atoms 
are in the ground state, a n-pulse does not affect the system. Only if 
atoms are in the state 11 j l k ) ,  does the n-pulse drive the k-atom from the 
state Ilk) to the state 12k) .  Let us apply a n-pulse with frequency 0: and 
phase q l ,  and afterward apply a n-pulse with the same frequency, and 
phase 9 2 .  According to (13.9), and substituting co -+ c2, we can write 
the expressions for CI and c2 after the action of a n-pulse, 

c1 = ic2(0)e-‘q, c2 = ic,(O)e‘P, (14.1) 

where ci (0) is the value of cj before the action of the pulse. Assume that 
the k-atom is initially in the state I l k )  (c1 = l),  and the j-atom is in the 
state, 11,). After application of the first n-pulse with frequency wf and 

83 
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I 

I2 j )  
I 
\ 
\ 

- - - - -  

Figure 14.1 : Energy levels of two interacting atoms. 

phase qq, we have 

After application of the second n-pulse, with phase p2, we get, 

cl = 0, c2 = ie'vl. (14.2) 

c* = i(ie'vl)e-"2 = --e'(v'-v2), c2 = 0. (14.3) 

Thus, the action of two n-pulses is equivalent to (13.2), if 



Chapter 15 

Unitary Transformations and 
Quantum Dynamics 

We can wonder what the connection is between the quantum dynamics 
described by the Schrodinger equation and the unitary transformations 
which describe the quantum logic gates. In this chapter, we shall de- 
scribe their relation. Let us suppose, for simplicity, that the Hamiltonian 
of the system is time-independent. Then, the Schrodinger equation, 

ih+ = WP, (15.1) 

has the solution, 
~ ( t )  = e- ixr /A\ I , (0 ) ,  (15.2) 

where for any operator F it is assumed, 

(iF)* ( iF)3  
,iF = E +iF + - +-+... 

2! 3! 
(15.3) 

Equation (15.2) defines the unitary transformation of the initial state 
e ( O )  into the final state Q(t ) ,  

(15.4) 

Consider, as an example, a spin 1/2 in a permanent magnetic field, 
under the action of a resonant electromagnetic pulse. The Hamiltonian 

i x t / h  Q ( t )  = U(t)Q(O) ,  U ( t )  = e- . 
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of the system is given by Eq. (12.22). We can get the time-independent 
Hamiltonian using the transformation to the rotating system of coordi- 
nates. This transformation can be performed using the formulas, 

W = UJQ,  Ft = UJFU,., (15.5) 

where Ur is the unitary matrix of the transformation in (15.5), 

9 (15.5~)  u - e i ~ I z t  
r -  

W is the wave function in the rotating frame; F is an arbitrary operator 
in the initial reference frame; Ft is the same operator in the rotating 
frame; and w = 00 is the frequency of the rotating magnetic field. 

In our case, we make the substitution in (15.1), 

(15.6) 

This gives, 

From (15.6) we get, after simplifications, the Scrodinger equation in the 
rotating frame, 

ih+' = WP', (15.7) 

The right side in Eq. (15.7) describes the interaction of the spin with the 
electromagnetic field, in the rotating frame. 

To simplify the right side of Eq. (15.7), let us find the time-depen- 
dent operator, 

(15.8) 1- - e - i y ~ I Z t ~ - e i y ) I Z t  
t -  
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For this purpose we consider the time derivative, 

'1,- - (- i ooI z ) e - i w i ~ ~ t  I - e i w g ~ z t  + (15.9) 
dt 

iwoZz. -1wg IZ t - e iy )  I Z  t 

Now, using the expressions for the operators I' (12.4) and I -  (12.23), 
we obtain. 

(15.10) 
1 
2 

zzz-  = -(lO)(Ol - Il)(ll)ll)(Ol = 

1 1 
-- l l ) (Ol  = - - I - - ,  

2 2 

z - z z  = - I l ) ( O l  = - I - .  
1 1 
2 2 

Using (15.10), we can rewrite Eq. (15.9) as follows, 

(15.11) 

From (15.1 1) we have a solution, 

1, = ei"" I - .  (15.12) 

In the same way, we can show that, 

e t I .  (15.13) 
I+ = e - i q , I Z t l +  i y l Z Z t  - e- iy) t  + - 

Substituting (12.23), (15.12) and (15.13) into (15.7) one can see that the 
Hamiltonian IH' in the rotating frame is time-independent, 

A 
7-l' = - p ) ( l l  + l1)(0l), (1 5.14) 

where S2 = y h is the Rabi frequency. 
Now, in the rotating frame, we can use the relations (15.4) for the 

time-independent Hamiltonian, IH'. In this case, the evolution of the 
system is described by the unitary operator, 

U ( t )  = e-i"t/h (15.15) 
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with the time-independent Hamiltonian N’. According to (15.14), the 
unitary operator U(t) in (15.15) can be written as, 

To simplify this expression, let us consider the time derivatives, 

( 1 5.16) 

(15.17) 

The second equation is valid because of, 

where E is the unit matrix. It follows from the second equation in 
(1 5.17) that, 

(15.19) 
n t  

i, k=O 

where uik and bik are time-independent coefficients. To find these coef- 
ficients, we use the initial conditions, 

10 

The first equation in (15.20) follows from (15.16) and (15.3). The sec- 
ond equation in (15.20) follows from the first equation in (15.17). Sub- 
stituting (15.19) into (15.20) we get, 

a00 = 1,  boo = 0, (15.21) 
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a01 = 0, b01 = i, 

a10 = 0, b1o = i, 

a11 = 1, bll =o .  
The resulting unitary evolution operator is 

Qt Qt 
U(t) = cos ,(lO)(Ol + 11)(11) + i  s i n ~ ( 1 0 ) ( 1 1  + Il)(Ol), (15.22~) 

or in matrix representation, 

cos Qt/2 i sin Qt/2 
i sin Qt/2 cos Qt/2 

U(t) = (15.22b) 

This exactly corresponds to the solution (12.29) of the Schrodinger equa- 
tion. Using (15.22), we obtain, 

co(t>lO) + Cl(t>ll), 

where co(t) and q ( t )  are given by (12.29). 



Chapter 16 

Quantum Dynamics at Finite 
Temperature 

So far we have considered an isolated (“pure”) quantum system. The 
same approach is valid for an ensemble of “pure” quantum systems, 
under the assumption of zero temperature. In reality, this assumption 
means that the temperature is small in comparison with the energy sep- 
aration between the considered levels, 

where kp, is the Boltzmann constant, wo is the frequency of transition 
between the levels of qubits, 10) and 11); and T is the temperature. Ger- 
shenfeld, Chuang and Lloyd [28, 291, and Cory, Fahmy and Have1 [30] 
pointed out that the quantum logic gates and quantum computation can 
be realized also at finite temperature, and even for high temperatures, 
kBT >> boo. This inequality is typical for electron and nuclear spin sys- 
tems. For example, for a nuclear spin, the typical transition frequency 
is 4 2 n  - 108Hz. So, at room temperature ( T  - 3 0 0 K )  one has: 
f i w o / k ~ T  - lop5. That is why we consider in this chapter a high tem- 
perature description of quantum systems. Then, using this approach, we 
will discuss in Chapter 26 the implementation of quantum logic gates at 
room temperature. 

90 
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When considering the case of zero temperature, one can assume that 
the system is prepared initially, for example, in the ground state. To 
populate this system in the excited state, one usually applies some ad- 
ditional external electromagnetic pulses. As was already mentioned in 
the Introduction, one can realize quantum logic gates and quantum com- 
putation (at least those discussed in the literature) only for a time inter- 
val, t ,  smaller than the characteristic time of relaxation (decoherence), 
t R :  t < t R .  The relaxation processes exist for both a quantum system 
at zero temperature (due to interactions with the vacuum and other sys- 
tems) and for the same system (or an ensemble of these systems) at finite 
temperature. So, for any concrete quantum system, the time t R  is always 
finite. Then, the question arises: What are the main differences between 
a quantum system at zero temperature and at finite temperature, when 
one considers quantum logic gates and quantum computation? Three 
different situations will now be discussed below. 

I. At zero temperature, it is assumed that one can prepare a quan- 
tum system in the desired initial state (pure or superpositional). For 
example, for an individual two-level atom, this initial condition can be 
the “ground state”, lo), the excited state, Il), or any superposition of 
these two states, Q(0) = co(0) 10) + q ( 0 )  11). The only restriction is, 
lc0(0)1~ + Ic1(0)l2 = 1. Then, during a time interval, t ,  smaller than the 
time of relaxation (decoherence), t R ,  one can use this system for quan- 
tum logic gates and quantum computation. The corresponding dynamics 
can be described for t < t R  by the Schrodinger equation. 

11. One can deal with the same two-level atoms at finite temperature. 
For example, these atoms can be “colored.” They can have energy levels 
(or some different quantum numbers) that differ from the atoms in the 
thermal bath. Because of the finite temperature, the “exact” initial con- 
ditions are not known for a particular atom. If, for example, the atom is 
in equilibrium with the atoms of a thermal bath, whai is known, is only 
the probability of finding this atom in the state 10) or 1 l ) ,  

P ( & )  = , (i = 0, 1). 
ePE,lkBT 

(16.1) 
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In this situation, one cannot implement quantum logic gates or carry out 
quantum computation, as described in I even if the time of relaxation, 
t R  is large enough. The wave function approach (the Schrodinger equa- 
tion), in principal, cannot be applied because one does not know the 
initial conditions. 

111. It was shown in [28]-[30], that one still can realize quantum logic 
gates and quantum computation using a density matrix approach for an 
ensemble of atoms, at finite temperature. Spealung very roughly, the 
main idea is the following. In equilibrium, there always is a difference 
between the number of atoms populated, for example, in the states 10) 
and 11). So, if one introduces a new effective density matrix which 
describes the evolution of the “difference” of atoms in these two states, 
then it will be equivalent to the density matrix of an effective “pure” 
quantum system! The situation is more complicated (see Chapter 26), 
but the idea looks very promising. 

The dynamics of an ensemble of atoms at finite temperature can 
be described by the density matrix introduced by Von Neumann (see, 
for example, [48]). This approach we shall use in Chapter 26, when 
describing the dynamics of the quantum logic gates, for time intervals 
smaller than the time of relaxation (decoherence). 

So, we shall discuss in this chapter the evolution not of a single atom 
at finite temperature, but of an ensemble of atoms. Every atom of this 
ensemble can still be described by the wave function, 

9 = COIO) + C l I 1 ) .  (16.2) 

First, we introduce the density matrix for an ensemble of atoms which 
are “prepared” in the same state at zero temperature. Instead of the wave 
function (16.2), we can consider the density matrix, p, 

P = Icol2lO)(0l +coc;lo)(ll +~l~o*I1)(OI+ (16.3a) 

ICl 1 2 1  1) (1 I .  
In matrix representation, the density matrix (16.3a) has the form, 

Po0 Po1 
p =  (Pl0 P J  

(16.3b) 
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where we define, 

The density matrix, p ,  satisfies the operator equation, 

ihP = "H, PI, (16.5) 

where [N, p ]  is a commutator defined by, 

[X, p ]  = 'Flp - p7-t. (16.6) 

For example, for the matrix element poo we have the equation, 

(16.7) apoo 
at ~ O O P O O  + 7-tOlPlO - P o o ~ o o  - POl7-tIO = ih -  = 

7-tOlPlO - POl7-tI0, 

where we have assumed that the Hamiltonian N has the form, 

1 

7-t = c 7 - t i k l i ) ( k l .  (16.8) 
i,k=O 

Generally, the matrix elements, 7 - t ; k ,  depend on time. 

tion. Indeed, the Schrodinger equation can be written in the form, 
Equation (16.7) can be easily derived from the Schrodinger equa- 

From (16.9) we have the equation for the coefficient CO, 

ihC0 = 7-tooc0 + 'Flolcl. (16.10) 
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The complex conjugate equation is, 

where we took into consideration the fact that the Hamiltonian is a Her- 
mitian operator, 

x i k  = xii. (16.12) 

We now multiply (16.10) by c:, and (16.11) by -CO. Then we add these 
equations. As a result, we obtain the following equation, 

a 
at 

ih-(coc;;) = x01c1c; - xFllococ;, (16.13) 

which coincides with Eq. (16.7). 
For an ensemble of atoms at finite temperature, one uses the aver- 

(16.14) 

which satisfies the same equation (16.5). In the state of the thermody- 
namic equilibrium, the density matrix is given by the following matrix 
elements [48], 

- E k l k s  T 
( k  = 0, I), (16.15) Pkk = e-Eo/kBT + e - E l / k B T  ' 

Po1 = PlO = 0. 

In (16.1S), Ek is the energy of the k-th level. 
From (16.4) and (16.15), one can see the principal difference be- 

tween the density matrices for an ensemble of atoms which are prepared 
in the same state at zero temperature and in the state of the thermody- 
namic equilibrium, at finite temperature. In the case of zero tempera- 
ture, if both matrix elements, poo # 0 and p11 # 0, then POI and p10 are 
also not equal to zero. At finite temperature one can have, for example: 
poo # 0, and p11 # 0, but pol = plo = 0. The relations, 

Po0 + PI1 = 1, Po1 = P;b? (16.16) 
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are valid for both zero and finite temperatures. The values ,000 and p11 
for both cases describe the probabilities of occupying the corresponding 
energy levels. 

Now let us consider, as an example, an ensemble of nuclear spins, 
I = 1 / 2 ,  in a constant magnetic field which points in the positive z -  
direction. The Hamiltonian of the system is given by (12.3),  with two 
energy levels, 

Am0 El = -. ha0 Eo = -- 
2 ’  2 

The density matrix elements in a state of thermal equilibrium, can be 
found from (16.15), 

e - f W , / 2 k ~  T 

’11 = @ q / 2 k ~ T  + e - h q ) / 2 k ~ T  ’ 

Po1 = PlO = 0. 

For the high temperature case, hoo << kBT (which is especially inter- 
esting €or quantum computation on electron and nuclear spins), we can 
expand (16.17) to first order in h o o / k B T ,  

1 1 
2 2 POO == + hu0/2kBT) ,  pi1 = -(I - Awo/2ksT) .  (16.18) 

The expressions (16.18) can be written in operator form, 

1 
2 

p = -E 4- (hiw0/2ksT)IZ,  (16.19) 

where E is the unit matrix and Zz is the operator for the z-component 
of spin 1 / 2  (see (12.4) and (12.5)). The expression (16.19) can also be 
obtained from the general expression for the density matrix, 

(16.20) 
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In (16.20), 3-1 = -hiw0Zz is the Hamiltonian of the system (see (12.3)), 
and T r  means the sum of the diagonal elements of the density matrix. 

The first term in (16.19) describes the density matrix at infinite tem- 
perature, T + 00, with equal population of energy levels. The second 
term in (16.19) describes the first correction due to the finite tempera- 
ture. 

Let us now consider the evolution of the density matrix under the 
influence of a resonant electromagnetic field with frequency wo. Substi- 
tuting the Hamiltonian (12.24) into the equation for the density matrix 
( 1 6 3 ,  we derive the equations for the matrix elements, 

where 

and the summation over the repeated index IZ is assumed. 
the explicit equations for the density matrix elements, 

(16.21) 

(16.22) 

We now write 

(16.23) 

Note that the second equation in (16.23) can be obtained from the first 
one, because poo + p11 = 1, and consequently, 

P I 1  = -boo. (16.24) 



16 Quantum Dynamics at Finite Temperature 97 

The last equation in (16.23) can be obtained from the third one, because 

Equations (16.23) include an explicit dependence on time. To derive 
time-independent equations for the density matrix, we make the substi- 
tutions, 

(16.25) 

which is equivalent to a transition to the rotating frame. Omitting a 
superscript “prime”, we derive from (16.23), 

POI = PTO. 

- i q ) t  pol = p;)leiq)t ,  PlO = P;oe 7 

2iPoo = Q2POl - PlO), (1 6.26) 

2iPOl = Q(Po0 - Pld ,  

PlO = P i p  P11 = 1 - Poo. 

From (16.26), we have a solution, 

,000 = a cos S2t + b sin S2t + 1/2, (16.27) 

pol = c + i(b cos S2t - a sin a t ) ,  

POl(0) + PlO(0) , c =  
1 POl(0) - PlO(0) 

u = poo(0) - -, b = 
2 2i 2 

Note that all coefficients in (16.27) are real. If the initial state of the 
system is the state of thermal equilibrium, then only the coefficient a 
differs from zero, and we have in this case, 

(16.28) 

When T + 00, we have from (16.17), poo(0) = 1/2, and the solution 
(16.28) does not depend on time, 

1 
2 Po0 = -, POI = 0. (16.29) 
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So, the time evolution of the system depends only on the initial deviation 
of the density matrix in (16.19) from E/2. 

For the initial density matrix (16.19) we have the solution, 

ihwo . 
Po1 = -- sin Qt. 

4 k ~  T 

(16.30) 

If we apply a n-pulse, then after the action of the pulse we have, 

Poo=i( l -$) ,  2 P o l = o .  

Note that after the action of the n-pulse, the value of p00 is equal to the 
value of pl l(0) = 1 - poo(0). 

Roughly, we can think of this state of an ensemble of spins described 
by the density matrix (16.19) as that of the single spin in the state 10). 
Similarly, one can think of the state of the ensemble of spins with the 
density matrix, 

(16.31) 

as that of a single spin in the state 11). The n-pulse drives an ensemble of 
spins from the state li) to the state Ik), where i # k, i, k = 0 or 1. Note, 
that unlike pure quantum-mechanical states, we have the transition, 

without any phase factor. 
The question arises: What corresponds to the superposition of quan- 

tum states in an ensemble of spins at finite temperature? To answer this 
question, let us apply a n/2-pulse which produces a superposition of 
quantum states for a “pure” quantum-mechanical system. From (16.30) 
we have, after the action of n/2-pulse, 

1 ihwo 
Po1 = -- 2 4 k ~  T ’ Po0 = - 9  (16.33) 
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We see from (16.33) that the quantum superposition of pure states cor- 
responds to the appearance of the nondiagonal elements in the density 
matrix for an ensemble of spins at finite temperature. 

Now let us compare the time evolution of averages for a pure quan- 
tum-qechanical system and for the ensemble. For the pure state, the 
evolution of the average spin is given by (12.37). For an ensemble, the 
average value of any operator A is given by, 

(A)  = Tr{Ap}. (16.34) 

For spin operators f x ,  f y ,  and f z  ((12.4) and (12.10)), and the density 
matrix (16.30), we obtain, 

1 
(I*) = P i k f L .  = Pol.r;o + PlO~,X, = p o l  + PlO) = 0, (16.35) 

1 1 fiwo 
(IZ) = P O O ~ &  + P d f ,  = -(Po0 - P11) = Po0 - - = - cos Rt. 

2 2 4kBT 
Taking into consideration that, according to (16.35), 

Am0 (fZ)(0) = - 
4 k ~ T  ' 

(16.36) 

we obtain, 
( I X )  = 0, (1 6.37) 

( f y ) ( t )  = ( I z ) ( 0 )  sin Rt, 

( / " ( t )  = ( I Z ) ( 0 )  cos at, 
which is exactly (12.37) , where (fz)(0) = 1/2. 

To conclude this chapter, we emphasize that there is no exact cor- 
respondence between the dynamics of a pure quantum system and an 
ensemble. One can see from (12.3 1) that for a pure system, 

U"l0) = ill),  (16.38) 
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u2?T 10) = -lo), 
u370) = -ill),  

~ ~ 7 0 )  =- lo), 
where U"" is the unitary operator that corresponds to the action of n n -  
pulse (n is integer). One can see that a n-pulse provides the additional 
phase shift i = ein/2. Also, one can see, that a 2n-pulse does not return 
a system to the initial state, because of the phase shift, - 1 = e'" . For 
an ensemble of spins, it follows from (16.30) that after the action of a 
n -pulse we have, 

n : 10) + I l ) ,  (16.39) 

and after the action of a 2n-pulse we have, 

2n : 10) + 10). 

In this case, a 2n-pulse returns the ensemble of spins to the initial state. 



Chapter 17 

Physical Realization of 
Quantum Computations 

Now we consider the physical implementation of quantum computation 
in a real physical system. The first physical system used for logic gates 
was the system of cold ions in an ion trap which is very well isolated 
from the surrounding. 

The standard radio frequency (rf) quadrupole trap (the Paul trap) 
provides a nonstationary quadrupole electric field, in which a charged 
particle experiences a restoring force for a displacement in any direction 
of its motion [49]. A single ion can be located at the center of the trap 
where the rf field is zero. To store several ions, one can use a linear trap 
with an additional electrostatic potential for axial confinement [50, 5 11. 
A laser beam with a frequency slightly less than the frequency of optical 
transition in an ion, cools the ions reducing their kmetic energy. 

In a linear trap, the spacing between vibrational levels of the ions 
may exceed the ionic recoil energy from photon emission (the Lamb- 
Dicke limit). In this limit, the ion system can be cooled to the ground 
state of its vibrational motion. Then, each ion is localized in a region 
which is small compared with the wave length of the photon. The dis- 
tances between adjacent ions are large enough to allow selective laser 
excitation of any ion. 

101 
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Cirac and Zoller suggested an implementation of quantum logic 
gates in this system using the electronic metastable states of the ions, 
and energy levels of vibrational motion of the center of mass of the ion 
string [21]. Here we will describe the implementation of quantum com- 
putation in ions in an ion trap. 

Assume that several ions are placed into the ion trap to form a linear 
structure. The spacing between the adjacent ions is supposed to be large 
enough so that the laser beam can drive a single ion inside the trap. 
Assume that the first excited state of an ion is a metastable one with 
a long radiative lifetime. By directing a resonant standing wave laser 
pulse at any particular ion, one provides a single-qubit rotation between 
the ground state 10) and the metastable electronic state, I l ) ,  

u " ( ~ ) I o )  = cos(a/2>10) - ie'v sin(a/2)11), 

~ " ( p ) l 1 )  = cos(a/2)11) - ie-'v sin(a/2)10), 

where a is the angle of rotation, and p is the laser phase. It is assumed 
that the equilibrium position of the ion coincides with the antinode (the 
region of maximum amplitude) of the laser standing wave. (Note that 
the unitary matrix U"(p) is conjugate to the corresponding matrix for a 
nuclear spin (see (13.9).) For a rectangular laser pulse, a = Qt, where, 
as for the spin system, t is the length of a pulse, and Q is a Rabi fre- 
quency (which is proportional to the electric field of a laser beam). Cirac 
and Zoller also showed how to implement the CN-gate and B,k transfor- 
mation between any pair of ions, by applying laser pulses. (We shall 
describe this method in the next chapter.) 

Now let us discuss the simplest example: a factorization of the num- 
ber N = 4, using a system of trapped ions. Assume that the X register 
contains D = N 2  states. So, we have log, 16 = 4 ions for the X register. 
Assume that the Y register contains N states. So, we have log,4 = 2 
ions for the Y register. Next, using a digital computer, we select a num- 
ber y (see Chapter 6), which is coprime to N (the greatest common 
divisor of y and N is equal to 1). In our case, we have only one such 
number, y = 3 .  The values of the periodic function (6.1) are: 

(17.1) 

f (x) = 3" (mod 4). (17.2) 
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We have, 
f(0) = 1 (mod4) = 1, 

f(1) = 3 (mod4) = 3, 

f(2) = 9(mod4) = 1, 

f(3) = 27 (mod4) = 3, 

f(4) = 81 (mod4) = 1, 

and so on. Now suppose that we “do not know” the period of the func- 
tion f ( x ) ,  and want to find it using Shor’s technique (see Chapter 4). 
The initial state of the system is the ground state, 

(17.3) 

)OOOO, 00). (17.4) 

The first four ions in the trap refer to the X register. The last two ions re- 
fer to the Y register. Next we apply sequentially n/2-pulses with phase 
n / 2  to the ions of the X register, to get the state, 

Next, we apply the CN-gate (1 1.1) to the last ion of the X register (con- 
trol qubit), and to the first ion of the Y register (target qubit). Then, we 
obtain the following state, 

(l0)lO) + I1)ll))lO). 

Finally, applying a n-pulse of the phase n / 2  to the last qubit of the Y 
register, we have, 
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I { j O O O O ,  01) + 10001, 11) + )0010,01) + 10011, 11)+ 
4 

~0100,01) + 10101, 11) + ~0110,Ol) + 10111, 11)+ 

~1000,01) + 11001, 11) + 11010,01) + 11011, l l )+ 

~1100,Ol) + 11101, 11) + ~1110,Ol) + 11111, ll)}. 

Using decimal notation for X and Y registers, we can rewrite (17.7) in 
the following form, 

+I% 3) + 16, 1) + 17,3) + 18, 1) + 19,3) + 110, 1) + (11,3)+ 

112, 1) + 113,3) + 114, 1) + 115,3)}. 

This is the same superposition, Ix, f (x) ) ,  as (4.3), for the function 
(17.2), which should be prepared according to Shor’s algorithm, for the 
discrete Fourier transform. Next, one applies the sequence of operators, 

(17.9) 

to get the discrete Fourier transform for the X register (see Chapter 5).  
We recall that the operators A,, and Bjk are defined by the following 
rules, 

( 17.10) 

1 
A$/) = -(lo]) - Il/)L 1/2 

B , k l O k O l )  = IOkO,)? BlklOkll) = lOk1,), 

B/kllkOl) = l l k 0 , ) ’  Blkllkl]) = exP(in/2k-J)llkl]). 

We count the ions of the X register as, I X ~ X ~ X I X O ) .  (We shall describe 
later how to realize these operators using electromagnetic pulses.) Now, 
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applying (17.9) to the state q2, we get for the first term on the right side 
of (17.7), 

1 
1. ~ ~ ~ 0 0 0 0 , o i )  = -(lo) + I1))looo)lol) = (17.1 1) 

1/2 

~0010,01) + ~0100,01) + ~0110,01)+ 

(1000,01) + ~1010,01) + (1100,Ol) + (1110,Ol)) = I&), 

7. B03lS6) = Is6), 

8. B02lS6) = IS,>, 

9. BO1IS6) = lS6)3 

1 
4 

10. AOJS6) = -(lOOOO, 01) + lOOOl, 01) + (0010,01)+ 

)0011,01) + (0100,01) + ~0101,Ol) + ~0110,Ol) + ~0111,01)+ 

)1000,01) + )1001,01) + )1010,01) + )1011,01)+ 

~1100,Ol) + ~1101,Ol) + ~1110,01) + 11111,Ol)) = Islo), 

where IS,) denotes the state obtained on the k-th step. 



106 INTRODUCTION TO QUANTUM COMPUTERS 

Now we shall repeat the same calculations, for example, for the third 
term of the right side of (17.7). We obtain, 
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From expressions (17.11) and (17.12), one can see that constructive in- 
terference occurs for the states 10000,Ol) and 10001,Ol). The construc- 
tive interference occurs also for the states 10000, 11) and 10001, 11). 
Measuring the state of the ions in the X register, one gets the state lO000) 
or lOOOl) with equal probability, 1/2. (We shall describe later how to 
realize such measurements.) Repeating a few times the whole procedure 
described in this chapter (applying the proper pulses and measurements 
of the state of the X register), one gets approximately half of the cases 
for the first 4 ions to be in the state lOOOO), and the other half, in the 
state (0001). Reversing the qubits of the X register (see Chapter 5),  one 
gets the states lO000) and I lOOO),  or, in the decimal notation, 10) and 18). 
This means that, 

D I T  = 16/T = 8, (17.13) 
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(see Chapter 4), and, consequently, the period T of the function f ( x )  in 
(17.2) is, T = 2. Now we compute z = y T / 2  = 3l = 3. The greatest 
common divisor of ( z  + 1, N )  = (4, 4) is 1.  The greatest common 
divisor of ( z  - 1, N )  = (2,4) is 2, which is the factor of 4 which we 
wanted to find. 



Chapter 18 

CONTROL-NOT Gate in an 
Ion Trap 

Now we consider how to realize the transformations described in the 
previous Chapter, by applying the electromagnetic pulses to ions in 
the ion trap. A qubit consists of the ground state and the long-lived 
(metastable) excited state of an ion. To realize logic gates, Cirac and 
Zoller [21] considered two excited degenerate states (states having iden- 
tical energies) of the n-th ion, ll,L) and 12n), which could be driven by 
laser beams of different polarizations, say CT+ and CT- (Fig. 18.1). The 
state 12n) is used as an auxiliary state. 

The evolution of any two-level system is described by the Schrodin- 
ger equation. That is why, to explain the dynamics of a specific system, 
it is often convenient to consider a corresponding “effective” spin sys- 
tem, because the evolution of a spin system can be discussed using the 
language of precession of the average spin (see Chapter 12). We shall 
use this approach here. 

First consider the CN-gate. Roughly spealung, the main idea of 
Cirac and Zoller is the following. Assume that the control qubit is 
spanned by the rn-th ion and the target qubit is spanned by the n-th 
ion. A n/2-pulse with the frequency of the optical transition wo and 
a polarization CT+ acts on the n-th ion. Assume the effective spin ?,*, 
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Figure 18.1: Energy levels of the n-th ion. States 11,) and 12,) can be 
driven independently by laser beams with different polarization; oo is 
the frequency of the optical transition. 

associated with this transition, points in the initial state along the +z- 
axis (see Fig. 18.2). After the action of a n/2-pulse, the spin will be 
in the x - y-plane, and it points, say, along the +x-axis, in the rotating 
frame. Later, one applies the three following pulses with the frequency 
wo - w,, where w, is the vibrational frequency: (1) a n -pulse with a+ 
polarization which acts on the rn-th ion, (2) a 2n-pulse with a- polariza- 
tion which acts on the n-th ion, and (3) a n-pulse with a+ polarization 
which acts on the rn-th ion. The effect of these three pulses is the follow- 
ing: the direction of the effective spin S,  reverses from +x to -x-axis, 
if the rn-th ion before the action of these pulses was in the excited state 
11,) (solid line in Fig. 18.2~);  the direction of 2, does not change if the 
rn-th ion was in the ground state 10,) (dashed line in Fig. 18.2~) .  After 
the action of these three pulses, one applies to the n-th ion a n/2-pulse 
with the frequency WO,  polarization o+, and a phase which differs by n 
from the phase of the first n/Zpulse. If before the last n/2-pulse, the 
spin S, was pointing along the +x-axis, it returns to the initial direc- 
tion along +z-axis (Fig. 18.2d - dashed line). If 2, was pointing along 
the -x-axis, the spin becomes directed along the -z-axis (Fig. 18.2d - 

+ 

+ 
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Figure 18.2: Rotation of the effective average spin ,?,, which represent 
the target qubit: (a) initial direction of the spin; (b) direction of the 
spin after action of the first nl2-pulse; (c) direction of the spin after 
the action of three pulses which implement the Cirac-Zoller gate; (d) 
direction of the spin after action of the last n/2-pulse. The solid lines 
in (c) and (d) correspond to the excited state of the control qubit; the 
dashed line corresponds to the ground state of the control qubit. In (a) 
and (b) the direction of the effective spin does not depend on the state 
of the control qubit. 

solid line). So, the n-th ion changes its state if the m-th ion was in the 
excited state. This is a realization of the quantum CN-gate (the state of 
m-th ion does not change after the action of five pulses). 

To realize this idea, Cirac and Zoller introduced a quantum gate (cz- 
gate), which works according the following rules, 

9 (18.1) 

, 

I l n l r n )  + - 1 l n l r n ) .  

Now we consider how to implement this gate. Assume that the laser 
frequency is w’ = wg - w,, the polarization is o+, and the equilibrium 
position of the n-th ion coincides with the node of the laser standing 
wave. Then, the Hamiltonian which describes the interaction between 
the n-th ion and the laser beam is [21], 

(18.2) 
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Here, ut  and a are the creation and annihilation operators of vibrational 
phonons. The operator u t  drives the whole system of ions from the vi- 
brational ground state to the first excited vibrational state (generates a 
phonon). The operator u drives the whole system of ions from the ex- 
cited vibrational state to the vibrational ground state (absorbs a phonon). 
The parameter q is given by the expression, 

(18.3) 

where k is the wave vector of the laser beam, rn0 is the mass of an ion, N 
is the number of ions, 0 is the angle between the axis of the motion of 
the center-of-mass of ions and the direction of propagation of the laser 
beam. The phase of the laser beam, as before, is designated by q. 

If the frequency of the laser beam is wo - w,, then the laser beam can 
stimulate two processes. If the n-th ion is in the ground state, lo,), but 
the whole system of ions is in the excited vibrational states, the whole 
system can make a transition to the vibrational ground state releasing the 
energy, Aw,. At the same time, the n-th ion absorbs this energy , Am,, 
and the energy of the photon, A(w0 - w,), and transfers to the excited 
state, 11,). This process is described by the first term in (18.2). If the 
n-th atom is initially in the excited state, Il,), but the system of ions is in 
the vibrational ground state, then the n-th ion can transfer to the ground 
state generating a photon with the frequency, (00 - w,), and a phonon 
with the frequency, w,. (Generation of a phonon means a transition of 
the whole system of ions from the vibrational ground state to the excited 
vibrational state.) This process is described by the second term in (18.2). 

If the laser beam has a 0- polarization, and the same frequency, 
(wg - ox), the interaction between the n-th ion and the laser beam is 
described by the Hamiltonian, 

(1 8.4) 

In this case, the laser beam stimulates a transition between the states, 
10,) and 12,) with generation or annihilation of a phonon. Under the 
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action of the laser beam, we have a kind of “rotation” between the states 
10,l) and I l,O), for o+ polarization of the laser beam, and between the 
states 10,2) and 12,0), for o- polarization of the laser beam. Here 10) 
and 11) without the indices indicate the ground state and the first excited 
state of the vibrational motion, respectively. The transformation for ro- 
tation under the action of a laser pulse of o+ polarization is given by the 
expression, 

II,O) + cos(a/2>11,0) - iePi’P sin(a/2) . 10,l). 

Here a is the angle of rotation, a = qQt, where t is the duration of the 
pulse. The transformation of rotation under the action of a o- pulse is 
given by the same expression as (18.5), but with the substitution of 2, 
for 1,. Note that transformation (18.5) is described by the same unitary 
operator as a one qubit rotation, (17. l),  but the formula for the angle a is 
different for these two cases. We denote the corresponding operator by 
U:(w, o, sp), where n indicates the position of the ion, a is the angle of 
rotation, w,  o, and sp are the frequency, the polarization, and the phase 
of the corresponding laser beam. (We will omit the frequency if w = wo, 
the polarization, if o = o+, and the phase, if sp = 0.) 

Now we are ready to describe the implementation of the cz-gate 
(18.1) using three pulses with frequency, w’ = wo - w,. Assume first 
that a n-pulse with polarization o+ and phase q~ = 0 acts on the m-th 
ion. The corresponding transformation is described by the unitary ma- 
trix, Ui(w’) .  Secondly, a 2n-pulse with polarization o- and a phase 
q~ = 0 acts on the n-th ion (the unitary transformation Up(w’ ,  a_). 
The third pulse is a n-pulse which provides the transformation, U i  (w’). 
Tbl. 18.1 demonstrates change of the states IkmpnO) under the action of 
three pulses. One can see from Tbl. 18.1 that the first n-pulse drives 
the control m-th qubit from the excited state to the ground state, while 
generating a phonon and changing the phase of the corresponding states 
by -n/2. The second 2n-pulse, which acts on the target n-th ion, only 
changes the phase of the state (O,O, 1) by n, leaving all other states un- 
changed. Note that this pulse does not affect the state 10, l,iO), because 
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Table 18.1: The cz-gate, as a result of action of three pulses [21]. 

of the (T- polarization of the laser beam. The third n-pulse drives the rn- 
th ion from the ground state to the excited state with an annihilation of 
a phonon and change of the phase of the corresponding states by -n/2. 
As a result, we return to the initial state with the initial phases for all 
states except for the state IlrnlnO), where we have a phase shift of n. 
So, the three pulses with the frequency w' provide the implementation 
of the cz-gate. 

Now we shall consider the implementation of the CN-gate. As we al- 
ready mentioned, to provide the CN-gate one applies to the target qubit, 
n,  two additional n / 2  pulses with the resonant frequency wg and the po- 
larization a+. The interaction between the resonant field and the n-th 
ion can be written as, 

(18.6) 

The one qubit rotation, under the action of the laser pulse, is described 
by the unitary transformation (17. l),  

] O n )  + cos(a/2)1On) - idrp sin(a/2)Iln), 

Iln) + cos(a/2)11n) - i C P  sin(a/2)10n), 

(18.7) 

where a = Q2t is the angle of rotation. 
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After the first n/2-pulse with phase -n/2, one applies three non- 
resonant pulses to implement the Cz-gate. Then, again one applies a 
n/2-pulse with the resonant frequency WO, polarization a+, but with 
phase n /2 .  The final operator is, 

u,"/2(n/2)U,((w')U~(WI, a-)x (18.8) 

u, ( w 1 ) U 3 - n / 2 ) .  

This operator describes the CN-gate. Let us check, for example, the 
action of (18.8) on the initial state llrnl,tO). After the action of the first 
pulse (the right-side operator in (18.8)), we have according to (18.7), 

1 
-(llrnlnO) + llrnOn0)). 2/2 

After the action of three non-resonant pulses we get, according to Tbl. 
18.1, the following state, 

(1 8.10) 

After action of the last resonant n/2-pulse with the phase n / 2 ,  we ob- 
tain, using (18.7), 

1 
2 -[-Ilrn)(lln) - l0n))lO) + Ilrn)(lOn) + l1n))lO)l = (18.11) 

I1rnOnO)- 

Thus, under the action of the pulse sequence (18.8), the initial state, 
IlmlnO), transforms to the state, l l m O n O ) ,  which corresponds to the ac- 
tion of the CN-gate: If the control qubit, m, is in the state llm), then the 
target qubit changes its state. The whole system of ions remains in the 
vibrational ground state. 



Chapter 19 

A j and B j k  Gates in an Ion 
Trap 

In this chapter, we consider how to implement in an ion trap both A and 
B,k gates (17.10), which are necessary for the discrete Fourier trans- 
form. First, we discuss the A j  operator. If we apply to the j-th ion a 
nl2-pulse with the phase n/2; we get, 

The second transformation differs from the transformation A by the 
sign. To provide the A j  transformation one can first apply a n-pulse 
with the polarization a+ and phase n/2 .  Then one applies a 2n-pulse 
with polarization a-. Then, again one applies a n-pulse with polariza- 
tion a+, and phase -n/2. Finally, one applies a n/2-pulse with polar- 
ization a+ and phase n /2 .  If the ion j is initially in the ground state, 
lo,), then after the action of the first n-pulse, one has the state I l j) .  The 
2n-pulse does not influence this state because of the a- polarization of 
the laser beam. After the next n-pulse one gets the state 1O.j). Finally, 
after the n/2-pulse one gets the state A ( l 0 j )  + llj)). If the ion j is 
initially in the excited state llj), then one has the following chain of 
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transformations, 

Thus, the sequence of 4 pulses provides the implementation of the A,i 
gate. We described here a scheme for the A,j transformation based on 
the system with energy levels shown in Fig. 18.1. If one can use an 
additional energy level, 131) and one induces a transition between the 
levels I l j )  and 13.i) with frequency ~ 1 3 ,  then it is more convenient to 
use the sequence of pulses described in Chapter 13: a 2n-pulse with the 
frequency ~ 1 3 ,  and a resonant n/2-pulse with the frequency wg and the 
phase n/2. 

Now let us consider the implementation of the Bik gate in an ion 
trap. For this, we can use the slightly modified cz-gate. Instead of a 2n- 
pulse with o- polarization, we take two n-pulses with o- polarization 
and different phases, to provide a phase shift n/2k-.i for the state I li l k O )  
under the action of the modified cz-gate. Thus, we apply four pulses 
with the frequency w' = wo - w,: (1) a n-pulse with the polarization 
o+ to the k-th ion, (2) a n-pulse with the polarization cr- to the j-th ion, 
( 3 )  a n-pulse with the polarization cr- and phase rp to the j-th ion, (4) 
a n-pulse with the polarization o+ and phase rp' to the k-th ion. As a 
result, using (18.5), we get the following transformation, 

(19.3) 

3 .  q%', 0 - 3  rp)ISI) = ISl), 

4. U,"(W', lp')/S1) = -e"D'JlkljO). 

If we put rp' = n + we get the modified cz transformation, 

( 1  9.4) 
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which corresponds to the action of the B,jk operator. 
Now let us find the transformation for the state I 1 k O j O ) .  We have, 

1. U;(w')JlkOjO) = -iJokojl) = IS,), (19.5) 

2. U,7(w', o-)lS1) = -1OJjo) = I&), 

U,"(O', qO'>lS,) = e'('P'-'P)IlkO,jO) = 1s)). 
3 .  U,;(O', 0-, qo>l~,) = ie-'~IOkOjl) =  IS^), 

4. 

If we put rp = q', the state I lk0,jO) does not change under the action of 
our sequence of pulses. Also, this sequence of pulses does not affect the 
states IOkOjO) and IOkl , ,O)) .  Thus, the slightly modified cz-gate, 

U," (4 I 

with the phase, 
n 

2k-j ' q = n + -  

provides the B,,k logic gate, which is needed for the discrete Fourier 
transform. 

To conclude this chapter, we discuss the experimental opportunities 
for realization of quantum computation using ion traps. There exists 
a number of ions with long-living metastable state of the order of one 
second, which could be used as qubits for quantum computation. As 
an example, the H g +  ion has a 2S1i2 ground state, lo), and a metastable 
2D5i2 excited state, I l ) ,  with the lifetime - 0.1s. The wave length of the 
resonant transition is hol x 280 nm. The vibrational frequency of the 
center of mass of the ions in a linear trap is of the order of 1MHz. The 
system of ions can be cooled by a laser beam with a frequency slightly 
less than the frequency of the allowed transition. For the H g +  ion one 
can use for this purpose the transition between the ground state and the 
second excited state, 2P1/2 with the wave length, A02 x 190 nm. The 
resonant laser beam with the wave length hol can provide a one-qubit 
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rotation with a Rabi frequency a, which depends on the intensity of the 
laser beam (typically, - 100kHz). The combination of the resonant 
and non-resonant laser beams can provide the cz and B j k  transforma- 
tions. To measure the state of the ions of the X register, one can use 
the quantum jump technique [22]. For the H g +  ion, for example, a 
laser beam with the wave length A02 can be applied to the ions of the X 
register. If the ion fluoresces, the measured state is lo), otherwise, the 
measured state is 11). 



Chapter 20 

Linear Chains of Nuclear 
Spins 

A second promising system we consider is the system of nuclear spins 
which are also well isolated from the surroundings. Let us consider, 
for example, a solid with the linear chains of atoms (ions) containing 
nuclear spins. We assume that any interaction between chains is neg- 
ligible. At the same time, we shall take into consideration the interac- 
tion between the nearest neighbors in the chain. Assume that a solid 
is placed into a uniform magnetic field which is oriented along the z -  
axis. Then, the one-spin Hamiltonian, without the interaction, can be 
written in the form (12.3). Following Lloyd [35], we suppose that we 
have a chain of three types of nuclei, A B C A B C A  B C.. . . All three types 
have the same spin Z = 1/2, but they have different magnetic moments 
(different gyromagnetic ratios). Assume that the interaction between 
the spins of a chain (for example, a dipole-dipole interaction) is small 
in comparison with the interaction of spins with the external magnetic 
field. Then we can take into consideration only the z z  part of interac- 
tion, 2AJk,k+l ZiZ i+ ,  , (Ising interaction), which commutes with the non- 
interacting Hamiltonian. Here, J is the effective constant of the Ising 
interaction. The Hamiltonian of the whole system (without the electro- 
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magnetic field) can be written as, 

(20.1) 

where we sum over all spins in the chain, and 

(20.2) A w1 = w4 = ... = w , 

B 

C 

0 2  = wg = ... = w , 

0 3  = w6 = ... = w . 

The constant of interaction in (20.1) is also a periodic function of the 
position k ,  

J12 = J45 = ... = J A B ,  (20.3) 

J23 = Jyj = ... = J B C ,  

J34 = J67 ... = J C A .  

The Hamiltonian (20.1) does not have off-diagonal terms. The eigen- 
states of the Hamiltonian represent the spin states of the type, 

(0011 lol l . . . ) .  

So, some spins in any eigenstate point “up” (the state lo)), and the rest 
point “down” (the state 11)). 

Assume that in some state of the system a spin, for example, B ,  
points “up”, and in another state of the system this spin , B ,  points 
“down”, and the directions of all other spins are unchanged. Then the 
difference, A E ,  between the energies of these two states can have the 
following values, 

A E  = A(wB zk J A B  f J B C ) .  (20.4) 

In (20.4), the upper (+) sign for J A B  corresponds to the state 10) of the 
neighboring spin A .  The lower (-) sign at J A B  corresponds to the state 
11) of the neighboring spin, A.  The same is true for the sign for J B C  and 
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the neighboring spin C. So, we find the following four eigenfrequencies 
of the Hamiltonian (20.1), 

= wB + J A B  + J A C ,  

o:~ = wB + J A B  - J A C ,  

wl0 = wB - J A B  + J A C ,  

(20.5) 

B 

wB - wB - J A B  - J A C ,  
11 - 

which correspond to the inversion of one spin, B .  In (20.5), m i  means 
that the left neighbor ( A )  is in the state li), and the right neighbor (C) is 
in the state Ik) ,  (i, k = 0 or 1.  

Let us consider, as an example, how to get the first frequency, w&, 
in (20.5). Because of the nearest-neighbor interactions, it is enough to 
consider only three spins and three terms in the Hamiltonian (20.1), and 
to take into account the inversion of one spin. In our case of inversion 
of the B spin, we consider a transition for the triplet, A B C ,  

where the first state refers to the spin A,  the second state refers to the 
spin B ,  and the third state refers to the spin C. To describe this transi- 
tion, the only important terms in the Hamiltonian (20.1) are the follow- 
ing, 

(20.7) 

where the operators Zi, Zi, and Zs act on the corresponding states in 
(20.6). Using the expression for the operator Zz (12.4), we obtain, 

‘FI’ = -h(WBz;  + 2 J  A B  Z A Z B  z z + 2 J B C z ; z 3 ,  

h 
2 

h!’/oA1BoC) = - - ( - W E  - J A B  - J B C ) I O ~ l ~ O ~ ) .  

The difference of energies for two states in (20.8) is, 

A E  = A ( d  + J A B  + J B c ) ,  (20.9) 
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which corresponds to the frequency w& in (20.5). The expressions for 
w i  and 0; are analogous to those given by the formulas (20.5). For 
the spins at the ends of the chain we have different frequencies. For 
example, in (20.2) we suppose that the left edge spin is spin A .  The 
eigenfrequencies associated with the inversion of this spin are, 

(20.10) 

where wf means that the neighbor spin ( B )  is in the state i. Because of 
contribution of the edge atoms, we have a total of 16 eigenfrequencies 
associated with the inversion of one spin. We can easily understand the 
appearance of these frequencies by considering that neighboring spins 
produce an effective magnetic field on a given spin. The effective field 
can increase or decrease the external field, depending on the orientation 
of the neighboring spins. 

A 
0; = w A  + J A B ,  = w A  - J A B ,  



Chapter 21 

Digital Gates in a Spin Chain 

So far one can not experimentally operate on individual spins such as 
on an ion in the ion traps. The problem of manipulation of quantum 
states using a spin system is rather complicated, and was not investigated 
experimentally so far. We consider in this chapter only the digital states 
(0 )  and Il), without superpositions and entanglements. So, the phase of 
the states is not important for us. 

The first question for a spin system is - How can one manipulate 
a given qubit? We can use a n-pulse to drive a spin from the state 10) 
to Il), and vice versa. But this pulse definitely will affect a number 
of spins. This problem was solved by Lloyd [35],  who suggested a 
special sequence of n-pulses which provides the exchange of the states 
between the neighboring spins. For example, to realize the exchange of 
states between the neighboring spins A and B ,  one can use the following 
sequence of n -pulses, 

(21.1) A A B B A A  
WOl w 1 1 0 low 1 I 0 0  1 0 1 1 ’ 

A , B  . where wik indicates a n-pulse with the frequency w i  (or m i ) ,  and the 
sequence of pulses follows from the left to the right, i.e. the first n-pulse 
is the pulse with the frequency wtl .  The action of the sequence (21.1) 
is shown in Tbl. 21.1. One can see that the first pair of pulses changes 
the states of A atoms which have the right neighbors in the excited state, 
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Table 21.1: Change of the initial states of two neighboring atoms, A and 
B under the influence of the sequence (21.1). The asterisk indicates that 
the atom is in the excited state. 

independent of the states of the left (C) neighbors. The second pair of 
pulses changes the states of B spins which have their left neighbors in 
the excited state, independent of the state of the right neighbor. Finally, 
the third pair of pulses repeats the action of the first pair. As a result, 
one has an exchange of one bit of information between A and B spins, 
independent of the states of the left and the right C-neighbors. One can 
use a simple sequences of pulses, like (21.1), to load the information 
into a spin chain. Let us, for example, have 6 spins, ABCABC. We 
want to load the number 7 into this chain. So, we should get the state 
ABCA*B*C* from the ground state, ABCABC. Here, by A*, B*, and 
C* we denote the excited states of the corresponding spins. (Recall that 
the phase of the state is not important here, so we do not use Dirac 
notation.) Next, we list the frequencies for the sequence of n-pulses 
and the corresponding change of states of the spins, 

1. w: : ABCABC --+ ABCABC*, (21.2) 

2. ABCABC* + ABCAB*C*, 

3. cotl : ABCAB*C* + ABCA*B*C*. 

The realization of the digital cN-gate is obvious. For example, if 
one applies two rt-pulses with the frequencies wpo and upl, the spin A 
changes its state only if the left C-neighbor spin is in the excited state, 
independent of the state of the right neighbor, B. We also show that 
using a slightly modified sequence (21. l) ,  namely, 

A A B A A  
wo 1 a 1  1 w 1 1 wo 1 w119 (21.3) 
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one can realize the F-gate (Tbl. 9.6), which is universal for digital com- 
putation [35]. The sequence (21.3) differs from (21.1) by the absence 
of a pulse with the frequency If in the complex of spins, A B C ,  the 
spin C is in the excited state, the result of the action of the sequence of 
pulses (21.3) coincides with the result of the action of the sequence of 
pulses (21.1). If the spin C is in the ground state, the pulse wrl does not 
act on the spin B .  In this case, the result of the action of the sequence 
of pulses (21.3) on the neighboring spins A and B ,  coincides with the 
result of the action on these spins of the sequence of pulses, 

A A A A  
wo1 W11@o 1 0 1  1. (21.4) 

The sequence (21.4) does not change the state of the A spin. So, the 
sequence (21.3) changes the states of the neighboring spins, A and B ,  
only if the spin C is in the excited state, providing the F-gate with the 
C-spin as a control bit. 

Besides the chain of nuclear spins, the promising candidates for 
the quantum computation are a chain of electron spins with Ising in- 
teractions, placed in an external magnetic field [52]; a heteropolymer in 
which each unit possesses a long-lived excited state [35];  and quantum 
dots [53]. 



Chapter 22 

Non-resonant Action of 
7t -Pulses 

The difference in frequencies does not provide a 100% selective exci- 
tation of a given resonant spin because of non-resonant effects in the 
radio frequency pulses. This effect can be studied by explicit numerical 
calculations. Let us consider, as an example, the cN-gate based on a 
system of two spins [54], I = 1/2, placed in a constant homogeneous 
magnetic field which is pointed in the positive z-direction. We take into 
consideration the Ising interaction between two spins and the interac- 
tion of each of these spins with an electromagnetic field which rotates 
in ( x ,  y) plane (see Chapter 12). The Hamiltonian of the system can be 
written in the form, 

where the two spins have different gyromagnetic ratios, yl and y2. The 
spins are interacting with a circularly polarized transverse electromag- 
netic field of the frequency, w, (12.20). In this case, the Hamiltonian 
(22.1) can be rewritten in the form (see (12.22) and (12.23)), 
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Figure 22.1: The energy levels of two Ising spins for w1 > w2. The 
dashed lines indicate single-spin transitions. 

where wk = yk BZ, S& = ykh is the Rabi frequency (h  is the dimensional 
amplitude of the transversal magnetic field). The energy levels of the 
two-spin system (22.1) are shown in Fig. 22.1, for the case, w1 > w2. If 
one applies a n-pulse with the frequency w = w2 - J, it can provide a 
CN-gate with the first (left) spin as a control qubit, and the second (right) 
spin as a target qubit - the second spin changes its state only if the first 
spin is in the state 11). 

Next, we present the results of numerical calculations of the dy- 
namics of the CN-gate [54]. The time-dependent wave function of the 
Schrodinger equation (12. l), with the Hamiltonian (22.2), can be writ- 
ten as, 

We use a substitution which is equivalent to a transformation to the 
frame rotating with the frequency o, 

coo --+ coo exp(iwt + idt)), c01 -+ c01 exp(iq(t)), (22.4) 
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where ~ ( t )  is a common phase which can be chosen arbitrarily to sim- 
plify the equations for the amplitudes c i k .  From the Schrodinger equa- 
tion, we derive the equations for the amplitudes Cik, 

-2ii.01 + 2@COl = WlCOl - W2COl - JCOl + S221Cll + s22Co0, 

-2ii.10 + 2@ClO = --W1c10 + 02C10 - J C l O  + S21coo + s22Cl1,  

-2ii.11 + 246Cll - 2WCll = -01c11 - W2C11 + J C 1 1  + S21COl + S22C10. 

The system of equations (22.5) was investigated numerically in [54]. 
The following values of parameters were chosen, 

01 = 500, 02 = 100, J = 5 ,  w = 02 - J = 95, (22.6) 

S21 = 0.5, S22 = 0.1. 

The characteristic dimensional parameters, for the case of nuclear spins, 
can be obtained, for example, by multiplying the parameters in (22.6) by 
the factor 2n x 106s-', which corresponds to the frequency 1 MHz. The 
condition, o = 02 - J = 95, corresponds to the resonant transition: 
110) -+ I l l ) ,  i.e. the target qubit changes its state only if the control 
qubit is in the excited state. The phase ~ ( t )  = (02 - 01 - J ) t / 2  was 
chosen. 

The dynamics of the modulus of the amplitudes Iclo(t) I and Icl ( t )  I 
for the parameters (22.6), and for the initial conditions, 

qo(0) = 1, coo = COl(0) = c1 I(0) = 0. (22.7) 

is shown in Fig. 22.2. One can see that under the action of a n-pulse, 
the value of lc lo l  approaches zero, and the value of l c l l l  approaches 
1 .  The two other amplitudes are zero. It means that the second spin 
transfers from the state 10) to the state Il), while the first spin remains in 
the same state, 11). Similarly, the state 11 1) transforms to the state 110). 
At the same time, a n-pulse does not affect the states 100) and 101). 
Thus, this system provides the digital CN-gate for quantum states in 
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Figure 22.2: Time-dependence of Iclo(t)l and l c l l  ( t ) ] .  The vertical ar- 
rows indicate the beginning and the end of the action of the rectangular 
n -pulse. 

spite of the non-resonant effects. (The dynamics of the quantum CN-gate 
will be discussed in Chapter 25.) As numerical experiments show, the 
angle of rotation of the target spin, a ,  is slightly bigger than Qzr, where 
5 is the duration of the electromagnetic pulse. The reason for this is 
associated with the weak indirect excitation of the resonant transition via 
non-resonant spin. The terms Q I c ~ o  and !221col in the last two equations 
(22.5) are responsible for these effects. 

The next question is how to avoid the effects of the non-resonant in- 
fluence of the rotating magnetic field, when these effects are significant. 
Assume, for example, that one applies the electromagnetic pulse with 
the frequency w:~ in a chain of nuclear spins A B C A B C  ... (see Chap- 
ter 20). This pulse also influences any spin B which has the eigenfre- 
quency mf0, because these two frequencies only differ by a small value, 
2 ( J A B  - J B C ) .  Following [55] ,  we estimate the influence of the non- 
resonant excitations. Let us consider the deflection of spin B with the 
frequency under the action of an electromagnetic pulse with the 
frequency w:,. We suppose that this deflection is small, and consider 
the influence of the neighbor spins, A* and C ,  (spin A* is in the excited 
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state, and spin C is in the ground state). We use the language of the 
“effective field”, which is often used in describing dynamics of mag- 
netic systems [56]. Suppose that a spin A*, which points “downward”, 
produces the effective magnetic field on the neighboring spin B which 

(22.8) 
is equal to 

B1 = -eZJ / y ~ ,  

where yB is the gyromagnetic ratio of spin B and e? is the unit vector 
pointed in the positive z-direction. In the same way, the neighboring 
spin, C, which points “upward”, produces the effective field which acts 
on the spin B ,  

2, = z z J B C / y B .  (22.9) 

So, before the action of a n-pulse, the spin B experiences the action of 
the net effective magnetic field of magnitude, Be,  

-3 - A B  

Be = Bo + ( J B C  - J A B ) / y B ,  (22.10) 

which points in the positive z-direction. (Bo is the external permanent 
magnetic field.) This field provides the frequency of transition between 
the states (0) and 11) for the considered spin B ,  which is equal to (see 

(22.11) B 
(1 2 . 3 ~ ~  

YBBe = 0 1 0 .  

Because the phase of the wave function is not important here, it is 
convenient to use the equations of motion for the average spin. To get 
these equations, we consider the spin dynamics in the Heisenberg rep- 
resentation. In this representation, the wave function is time indepen- 
dent, but the quantum-mechanical operators depend on time [48]. In the 
Heisenberg representation, the equation of motion for the vector spin 
operator, I ,  is given by the Heisenberg equation, 

-+ 

d -  - 
ih-Z = [ I ,  ‘HI, 

dt 

where ‘H is the Hamiltonian, and [?, 3-t] is the commutator, 

(22.12) 

[?, ‘HI = 13-1 - x?. (22.13) 
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The Hamiltonian 'FI is given by (12.21), where we replace the external 
field, 5, by the effective field, ze, and y = V B .  Using an implicit 
representation of the operator 7 (12.4) and (12.10), one can derive the 
well-known relations, 

[?'Iz - I z I Y  = i l x ,  

I z I x  - l x I z  = i lY.  

From (22.12)-(22.14) we derive the following equations, 

d 
- I x  = ~ B ( I ' B ~  - ZzBB,Y), 
dt 

(22.15) 

d 
dt  
d 
dt  

- IY = Y B ( I ~ B :  - Z"B,Z), 

--Iz = ~B(I"B,Y - IYB:). 

Using the cross-product notation, we obtain the well-known equation 
which describes the dynamics of spin B ,  

(22.16) 

Taking the quantum-mechanical average, we have the same equation for 
the average spin, (I). 

If one applies a circularly polarized electromagnetic pulse in the x - 
y plane with the amplitude h and the frequency w (see (12.20)), one has 
the effective magnetic field in (22.16), with the following components, 

-t 

B; = w y o / y ~ ,  B,X = h cos wt, BZ = -h sin wt. (22.17) 

Then, the equation for (i) can be written in the form of the following 
three equations, 

(22.18) 
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d 

where QB = yBh, and (I*) = (I") f i ( P ) .  The substitution, 

is equivalent to a transition to the rotating reference frame. Introducing 
the notation, m = (Z'), we finally derive from (22.18) the system of 
equations which describes the dynamics of the average spin, 

(22.20) B S + i ( q 0  - w)s = iQBm, 

1 
fh Z E  -QB(s - s*). 

2 

For a resonant pulse, w = wfo, and the initial conditions, m(0) = 1/2, 
s(0) = 0, we have the solution of (22.20), 

(22.2 1 ) 

1 
m(t) = - cos QBt. 

2 
We now take into consideration the fact that the real and imaginary parts 
of s describe the dynamics of the x and y - components of the average 
spin in the rotating frame. So, the solution (22.21) coincides with the 
expressions (12.37) derived directly from the wave function of the cor- 
responding Schrodinger equation. 

Consider now the non-resonant case, when the frequency of the elec- 
tromagnetic field satisfies the following relation, w = w:l # wfo. So, 
the electromagnetic pulse is intended to excite a spin B ,  with the fre- 
quency 001. In this case, the solution of (22.20) can be written as, 

1 
2 

s(t> = f- sin0[2cos e sin2(w,t/2) + i sin(w,t)l, (22.22) 
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1 
2 

m(t )  = *-[I - 2sin2e sin2(o,t/2)1, 

where the upper sign “+” corresponds to the initial conditions, 

1 
2 

m(0) = -, s(0) = 0, (22.23) 

and the lower sign “-” corresponds to the initial conditions, 

(22.24) 
1 

m(0) = --, 
2 s(0) = 0,  

and the following notation is introduced, 

(22.25) B sin0 = QB/W, ,  cose = (Ol0 - w&)/w,, 

we = $2; + (wf0 - C o p .  

Expressions (22.22) describe the precession of the non-resonant spin, 
B ,  in the rotating frame, around the effective field, B,, with the z -  
component, (ofo - w&) /ye ,  and the x-component, Q ~ / y p , .  In (22.25), 
o, is the frequency of spin precession around the effective field, Be, and 
0 is the polar angle of the effective field. Fig. 22.3 shows the precession 
of the average spin, (?) in the vicinity of the ground state (m(0) = 1/2), 
for the case, ofo)o&. The deviation of the spin B from the digital states, 
m = f (1 /2)  will be small only if the amplitude of the pulse, h, is small 
in comparison with the frequency difference, lofo - o:l I / ~ B .  

Now we shall show how one can eliminate the non-resonant devi- 
ation of the average spin. It is clear from (22.22), that a non-resonant 
spin returns to its initial position at the end of a n-pulse if o,t = 2nk, 
k = 1.2, ...; t is the duration of the n-pulse. Setting 

.-+ 

+ 

Q B t  = IT, ~ , t  = 2nk, k = 1, 2, ..., (22.26) 

one gets the n-pulse for the resonant spin which does not deflect the 
non-resonant spin. To realize such an opportunity, one should choose 
the amplitude and the duration of a pulse to satisfy the conditions, 

Q B  = - wfo1/(4k2 - l)‘”, t = n / Q B .  (22.27) 
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Y 

X 

+ 
Figure 22.3: Precession of the non-resonant spin, (I), around the effec- 
tive field, ze, in the rotating frame. 

This choice eliminates the non-resonant deviation of the spin B from 
both initial conditions, m(O) = 1/2 and m(O) = - 1/2. The same analysis 
is valid for spins A and C. 



Chapter 23 

Experimental Logic Gates in 
Quantum Systems 

A one-qubit rotation, under the action of a resonant n-pulse, is a com- 
monly used experimental technique. That is why the present efforts of 
experimental groups are concentrated on the design of the two-qubit 
quantum logic gates. Recall that the quantum CN-gate, in combination 
with the one-qubit rotations, is universal for quantum computation, i.e. 
any logic gate can be constructed from their combinations [20]. The 
same is true for the cz-gate and one-qubit rotations, because the CN- 
gate itself can be obtained as a combination of the cz-gate and one-qubit 
rotations (see Chapter 18). 

We now describe the first experimental realization of the CN-gate 
in a quantum system, demonstrated by Monroe et al. [22]. These au- 
thors used a modified Cirac and Zoller method for a single 9Be+ ion 
in a rf ion trap. The target qubit was spanned by two hyperfine levels 
10) = IF = 2,mF = 2) and 11) = IF = l , m F  = 1) of 2S1/2 elec- 
tronic ground state. Here F denotes the total (electron+nuclear) spin 
of the state, mF denotes the projection of the total spin on the direc- 
tion of the external magnetic field. The control qubit was spanned by 
the first two vibrational states of the trapped ion. The energy levels are 
shown in Fig. 23.1, where the first number k in Ikn) belongs to the con- 
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Figure 23.1: Energy levels used in the experiment [22]. Dashed lines 
show the main transitions used in this experiment. 

trol qubit (vibrational state), the second number belongs to the target 
qubit (hyperfine state). The hyperfine frequency f o  = wo/2n is approx- 
imately 1.25 GHz; the vibrational frequency f x  = w,/2n is approxi- 
mately 11 MHz. In a weak magnetic field with Bo ~ 0 . 1 8  mT, the levels 
10) = ( F  = 2,mF = 2) and 11) = IF = l , m F  = 1) were separated 
from the lower Zeeman levels with mF < F .  To realize the quantum 
CN-gate the authors of [22] applied three pulses: 
(1) a nl2-pulse for transitions IkO) t, Ikl)  with a frequency f o  ( k  = 

(2) a 2n-pulse for the auxiliary transition between the state 11 1) and the 
level corresponding to the 1 F = 2 ,  m~ = 0) and the ground vibrational 
state 10). (This state does not carry qubits and is not shown in Fig. 23.1. 
It is separated from the level 100) by approximately 2.5 MHz.) This 
transition reverses the sign of the state 11 1 ), namely: 11 1) +. - 11 1). 
(3) a n/Zpulse for the transition IkO) ts Ikl)  with a frequency fo 
and a n-phase shift relative to the first n/2-pulse. For the transition 
(00) ts IOl), the effects of these two n / 2  pulses cancel each other, and 
the ion remains in the initial state 100) or 101). But for the 110) ts 11 I )  
transition, the effects of two n/2-pulses are additive resulting in the 

0, 1). 
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transformation from one state to the other. 
In the experiment [22], a single ’ B e +  ion was stored in a radio fre- 

quency ion trap with vibrational frequencies f x ,  f y ,  f, 11, 18, 30 
MHz. Employing the stimulated Raman cooling in the x-dimension, the 
authors achieved a 95% time occupation in the vibrational ground state. 
To induce the transitions, they applied two Raman beams of approxi- 
mately 1 milliwatt power at 313 nm which were detuned approximately 
by 50 GHz to the red from the 2P1/2  excited state. The wave-vector 
difference pointed approximately along the x-axis of the trap, so the 
Raman transitions were insensitive to the y- and z-directions of motion. 
The difference of the frequencies of two Raman beams could be set to 
any of the three frequencies, fo, fo + f x ,  and fo - f x ;  it was tunable 
from 1.2 to 1.3 GHz. 

To detect the population of a target qubit, the authors applied c+ po- 
larized laser radiation to the transitions IkO) +-+ 2P3/21 F = 3, mF = 3). 
Then they detected the ion fluorescence which was proportional to the 
population of IkO) states. To detect the population of the control qubit, 
they added a Raman n-pulse. For example, if they got the value of a 
target qubit “0” (IkO) states), they could repeat the experiment applying 
a Raman n-pulse with a frequency fo - f x  just prior to the detection of 
a target qubit. The presence of fluorescence indicated the value “0” for 
the control qubit. 

To prepare any initial state of qubits, the authors applied one or two 
Raman n-pulses to the 10,O) state. Then applying prescribed sequences 
of Raman pulses to any of the four initial states of qubits, they demon- 
strated a reliable implementation of the quantum CN-gate with digital 
initial conditions. 

Another realistic idea for implementation of the CN-gate is the use 
of cavity quantum electrodynamics (QED) techniques [53,57]. (Review 
of this technique are given in [58].)  The state of the cavity field may be 
either a vacuum 10) or a single-photon state, 11). When an atom passes 
through the cavity, and the cavity is tuned to the atomic transition, the 
interaction Hamiltonian can be written as [57]: 

x, = iAS22l(lO)(llU+ - 11)(01u). (23.1) 
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Here, the states 10) and 11) refer to the atom, S21 is the single-photon 
Rabi frequency; and at, a are creation and annihilation operators of a 
photon in the cavity. If the cavity is detuned from the transition fre- 
quency, the non-resonant Hamiltonian can be written as [57], 

x2 = ~(Q2/2 )a t a ( l l ) ( l l  - lO)(Ol), (23.2) 

where is the change of the atomic level spacing per photon in the 
cavity. It was suggested in [53, 571 that one uses a non-resonant interac- 
tion (23.2) to produce a phase shift in the atomic state controlled by the 
photon number. This method is related to Ramsey atomic interferometry 
P91. 

Let, for example, the target qubit be an atom with two circular Ry- 
dberg states 10) or 11) [53]. The high-Q cavity is placed between two 
auxiliary microwave cavities in which the classical microwave field pro- 
duces a n/2-rotation of the effective spin corresponding to a two-level 
atom. After an atom passes through the first microwave cavity, the state 
of the system Ink) (n ,  k = 0, 1) transforms to, 

1 
InO) -+ -In)(lO) + i l l ) ) ,  (23.3) 

.Jz 

where the first number n refers to the photon in the high-Q cavity, and 
the second number k refers to the atom. In the central high-Q cavity, a 
non-resonant (dispersive) interaction with the quantized field produces 
a phase shift. For any state Ink) one has 

InO) + exp(-in@/2))n0), (23.4) 

jn l )  += exp(in0/2)Inl), 

where 0 is the phase shift per photon which can be tuned to be n. The 
phase of the classical field in the third cavity is shifted by n relative to 
the first one. Then, in the third cavity 

(23.5) 
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If there is a photon in the high-Q cavity (n = l), then the phase shift 
for an atom in this cavity is equal to n, and the rotations of an effective 
spin in the edge cavities add, producing a total rotation of n. In the 
opposite case, (n = 0) both rotations in the edge cavities cancel each 
other, and the atom remains in the initial state. The typical parameters 
of the system are: the resonant frequency x 2 x 10" Hz, and the cavity 
field life-time x 0.5s [53].  

We shall describe now the measurement of a conditional phase shift 
(quantum phase gate) in a QED cavity, performed by Turchette et al. 
[24]. In this experiment, the qubits were spanned by two photons with 
different frequencies. Conditional dynamics originated from the nonlin- 
ear optical response of a cesium atom. Two atomic transitions with the 
orthogonal circular polarizations cr+ and cr- were coupled to the cavity 
field. The rate of the cr- transition 6S1p IF = 4, m = 4) t) 6P3p 
IF = 5 ,  m = 3) was negligible compared with the a+ transition to 
IF = 5 ,  m = 5 ) .  The ground state IF = 4, m = 4) was prepared 
by optical pumping of a beam of Cs atoms. To study photon-photon 
interactions via an atom, the authors of [24] investigated the transmis- 
sion of a pump beam with a frequency f b ,  and a probe beam with a 
frequency f u  (Fig. 23.2). After these beams passed through the cavity, 
the polarization states of the beams were analyzed. If the probe beam 
was linearly polarized, then the a- component received a phase shift 
corresponding to an empty cavity. The a+ component received a shift 
corresponding to the atom-cavity system. The differential phase Qu be- 
tween o& components can be measured by analyzing the polarization of 
the output beam. To investigate the truth table for the quantum phase 
gate, the authors recorded the dependence of the probe beam phase Qa 
on the intensity of a pump field of either o& polarization, and they did 
the same for the pump beam phase Q b .  (The probe beam was detuned 
by 30 MHz and the pump beam was detuned by 20 MHz off the atomic 
resonance.) Then the authors extracted the phase shifts per photon to 
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fa 
I 

Figure 23.2: Scheme of the experiment [24]. Two photon beams with 
frequencies f a  and fh interact in the cavity M via an atom. The dashed 
line shows the atomic beam. 

get the following truth table: 

I - -) -+ I - -), (23.6) 

1 + -) + exp(i@.,)I + -), 
I - +) + exp(i@b)l - +), 

I + +) + exp[i(@,, + @t, + All1 + +), 

where the first sign refers to the polarization of the probe beam, and 
the second refers to the polarization of the pump beam, @,, % 17.5", 

We shall discuss also very briefly the opportunities for using quan- 
tum dots to implement quantum logic gates. Barenco et al. [53] sug- 
gested using quantum dots to implement a quantum CN-gate. They con- 
sidered two single-electron quantum dots embedded in a semiconductor 
and separated by a distance R.  A qubit is spanned by the ground state 
10) and the first excited state 11) of a dot. In the presence of an ex- 
ternal static electric field, one can choose the reference frame in which 
the dipole moment in the state 10) is di and the dipole moment in the 

@b X 12.5", A 16". 
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EO < 

Figure 23.3: The wave functions of a quantum dot for electric field Eo = 
0 (a); and Eo # 0 (b) [53]. 

state 11) is -di (i = 1, 2). The observable effect is connected with the 
shift of the charge distribution which is opposite in the states 10) and 11) 
(Fig. 23.3). It is supposed that the two dots, A and B ,  have different 
resonant frequencies wA and w B .  The Hamiltonian of the dipole-dipole 
interaction Flint to a good approximation commutes with the Hamilto- 
nian of noninteracting dots, and, 

where n = 0, 1 refers to the state of the first dot, and k = 0, 1 refers to 
the state of the second dot. Thus, the dipole-dipole interaction between 
the dots can be described by the Ising interaction (see (20.1)) of two 
effective spins with the constant of interaction J .  The scheme for energy 
levels of the two-dot system is the same as the energy levels of the two- 
spin system (Fig. 22.1). To realize the quantum CN-gate with the control 
qubit A ,  it was suggested in [53] to apply a n-pulse with the frequency 
wB - J .  This pulse drives the dot B if the dot A is in the excited state. 



Chapter 24 

Error Correction for 
Quantum Computers 

One of the main challenges for a theory of quantum computers is the 
problem of error correction. The standard way to correct a computer 
error uses redundancy. One uses several elements to represent the same 
bit. To incorporate the error correction procedure into a digital atomic 
chain computer, Lloyd suggested using the more complicated three-level 
systems [18]. The atoms ( A ,  B ,  or C )  must possess an additional excited 
state 12) which decays quickly into the ground state. 

Let, for example, the atom B have a state 12) which decays quickly 
into the ground state 10). Assume, that a triplet ABC is used to store 
the same bit, i.e., one has the state 1000) or 1111) (here l i j k )  means 
l i A j s k c ) ) .  An error usually changes the state of only one atom. Then, 
one would have one of the states with an error IOOl) ,  lolo), or I lOO) ,  
instead of the state 1000) (or the states 101 l) ,  I l O l ) ,  or 11 10) instead of 

To correct the error, one applies the sequence of pulses with the 
I1 11)). 

frequencies, 

WgBg(1 * 2 ) 4 ( 0  * l)o;B(l * 2)Wf1 (0  * l), (24.1) 

where w i ( n  t, m )  denotes the frequency of transition n t) rn (n ,  m = 
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0, 1, 2) for atom B when the neighboring atoms A and C are in the states 
li) and Ik) (the first pulse has the frequency w,”,). Then, one exchanges 
the states of A and B (see Chapter 21), and repeats the sequence (24.1). 
At the third step, one exchanges the states of the atoms B and C ,  and 
again repeats (24.1). As a result, the initial state 1000) or 1111) is re- 
stored. 

As an example, we consider the correction of the state 1001). At 
the first step, the sequence (24.1) does not change this state because it 
acts on the atom B only if the both neighbors ( A  and C) are in the same 
state, either in 10) or in 11). After the atoms A and B exchange their 
states, one has the same situation (the state 1001)). After the exchange 
of states between the atoms B and C ,  one has the state (010). Now, the 
first pulse of the sequence (24.1) drives the atom B to the state 12), (see 
Fig. 24.la) which quickly decays to the state 10). The three other pulses 
do not act on the atom B .  As a result, one has the desired state 1000). In 
Fig. 24.lb, we show the analogous scheme for the case when the neigh- 
bors, A and C, are in the excited state (the state 1101)). We shall discuss 
now important objections which concern the action of the electromag- 
netic pulses [60]. Let consider first a chain of spins ABCABC ... with 
the king interaction, and an interaction with a resonant electromagnetic 
n-pulse. It is obvious, that the angle of rotation, cq, may occasionally 
differ from n , where, 

ai X Yiht,  (i = A ,  B ,  C ) ,  (24.2) 

where h is the amplitude, and t is the duration of the electromagnetic 
pulse which is circularly polarized in the xy plane. (We mentioned al- 
ready in Chapter 22 that the angle of rotation, a ,  is slightly larger than 

Now we consider one of the opportunities to correct the error caused 
by the distortion of the n-pulse in a spin chain [55].  Assume that the 
electromagnetic radiation enters the quantum computer through one of 
16 resonant samples, where the signal of the spin resonance could be 
observed. Three samples contain the spins A, three samples - spin B ,  
and three samples - spin C. The extra four samples correspond to the 

yiht.1 
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Figure 24.1 : Correction of the “error bit” in atom B in the triplet A B C ;  
(a) The neighbors A and C are in the ground state 1010); (b) The neigh- 
bors A and C are in the excited state 1101). The numbers i = 1 - 4 
denote the transition under the action of the i-th pulse in the sequence 
(24.1). 

edge spins. 
The scheme for correction of the distorted n-pulses for the “spin 

quantum computer” is presented in Fig. 24.2. Every sample “ S j ”  is 
placed in the magnetic field 2.j oriented along the z axis which corre- 
sponds to one of the resonant frequencies of the quantum computer (1 2 
internal frequencies, and four frequencies for the edge ions). For exam- 
ple, for the samples with the spins B ,  

B B B YBBl = woo, yBB2 = 0 0 1 9  yBB3 = w10’ yBB4 = wyij 

where B1, Bz, and B3 are the corresponding magnitudes of the magnetic 
field. The amplitudes h A , B , C  of the electromagnetic pulses are selected 
in such a way, that ~ A , B , C  = n .  So, for the normal situation (undistorted 
n-pulses) the signal of the free precession (SFP) from the “resonant 
sample” is absent. If occasionally a~ # n,  the SFP from the resonant 
sample may be measured. 

Let us assume, for example, that the electromagnetic n-pulse drives 
a spin B from the ground state, lo), to the excited state, 11). The evo- 
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4 1 2  3 4 1 2  3 0 . 0  0 . 0  4 1 2  3 

Figure 24.2: The scheme for correction of the distorted It-pulses. The 
boxes G I - , ~  are the “generators” of n-pulses and “weak correcting 
pulses”. The circles s1-16 are the “resonant samples”. 0 are the 
measuring devices which measure the signal of the free precession and 
transfer the information (lines “4”) to the “generators”, to create a weak 
correcting pulse. “1” - the n-pulses, “2” - “weak correcting pulses”, “3” 
- restored pulses, which act only on the resonant samples, to restore the 
equilibrium state. 
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Figure 24.3: Rotation of spin B around the x-axis of the rotating frame 
under the action of the distorted n-pulse. 

lution of the average spin can be described approximately by the so- 
lution (22.21). Suppose, for example, one detects the SFP after the 
action of a n-pulse, s = ia,  in a resonant sample. If the measured 
value, a ,  is greater than zero, then the y-component of the average spin 
( ( P )  = Zrn(s)) in the rotating system of coordinates is positive. It 
means that the angle of rotation, a~ < n (see Fig. 24.3). In this case, 
one applies a resonant pulse along the x-axis of the rotating system of 
coordinates, with the angle of rotation, ah, 

a; = n - aB = arcsin2a. (24.3) 

If a < 0, it means that a~ > n. In this case, one should apply an 
additional pulse with a; = a~ - n = arcsin 12~1, along the negative 
X-axis of the rotating system of coordinates, i.e. a pulse with a phase 
shift n relative to the first pulse. Note, that after the additional pulse, 
one should apply a n-pulse to the sample to restore the initial state of 
the resonant sample. 

One of the most challenging problems in quantum computation is 
the error correction for complicated superpositional states which are 
used, in particular, in Shor’s algorithm. Discovery of the existence of er- 
ror correction codes for the superpositional quantum states [25, 61, 621 
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was the second triumph of quantum computation theory, after the dis- 
covery of the prime factorization algorithm. We shall describe here the 
principal opportunity to correct the phase error of a spin system based 
on the simple three-qubit scheme suggested by Steane [61]. 

To describe this scheme, we make a transformation to the I"-repre- 
sentation, in which the matrix I" is diagonal. This transformation can 
be done using the unitary matrix, 

(24.4) 

and formulas (15.5). One can check that, 

( I" ) '  = U+l"U = (24.5) 

Thus, in the I"-representation, the Zx matrix is diagonal, and its eigen- 

(24.6) 

correspond to the eigenvalues, I" = f 1 /2. We shall use the CN-gate in 
the x-representation, 

I ~ i O k ) ( L ~ k l "  + lli1k)(~iOklXj 

which transfers the state of the target spin, k ,  if the control spin, i, points 
in the negative x-direction (the state I li)"). Assume that the initial qubit 
is in an arbitrary state, which can be described by the wave function, 

1cI.o = COlOl) + Cllll). (24.8) 

Here, we omit the normalization constant, which is not important. For 
encoding this superpositional state, we consider two additional qubits in 
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the states, 102) and 103). Then, we apply the operators CN;, and CNt3  to 
the wave function, 

~ 0 ~ ~ 1 0 2 ~ 3 )  + C11110203). 

As a result, we obtain the encoded entangled state, 

Now we consider a phase distortion for one of three qubits, for ex- 
ample, for the first one. We represent this distortion in the form, 

111) + 111) cos(v/2) + i101) sin(v/2). 

To confirm that (24.1 1) describes the phase distortion, let us compare 
the state ~010) + CI 11) with the distorted state, 

CI  {cos(v/2) 11) + i sin(v/2) 10) 1 = 

{CO cos(v/2) + i c ~  sin(v/2)}lO)+ 

{CI cos(c0/2) + ~ C O  sin(v/2)}11). 

We are going to compare the averages, (I"), ( Z y  ), and ( Zz) for these two 
functions. In the Zx-representation, the Zz matrix can be found using 
(15.5) and (24.4), 

(Iz)'= 1 ( l )  (' ) (; ;') = - A  ( O  I) (24.13) 
4 -1 1 0 -1 2 1 0  

In the same way, we can find the matrix I Y  in the Zx-representation, 

(24.14) 



150 INTRODUCTION T O  QUANTUM COMPUTERS 

i.e. the matrix IY is the same in both representations. Now we can find 
the average values, ( I x ) ,  ( I y )  and ( I z ) .  

For the initial state, colO) + c1 Il), we have, 

where index “i” means “initial”. We used here the matrix representation 
of the wave function, 

COlO) + C l l l )  = (2) 9 (24.16) 

C;;(OI + c;(ll = <c;, c;>, 

and omitted “prime” for I s ,  ZY, and Zz.  In the same way, for the distorted 
wave function (24.12), we obtain, 

1 
( I x )  - -[(lcOl2 - Icl 1 2 )  cos q + i sin q(clc;; - cot;)] = 

(Z”)i cos q - ( I Y ) i  sinq, 

( I Y ) ~  = 5[i(coc; - clcg)cosq + (lcO12 - 1c1l2> sinq] = 

( Z y ) i  cos q + sinq, 

(24.17) 
d - 2  

1 

( I z ) d  = ( z z ) j ,  

where the index “d” indicates “distorted”. Obviously, the expressions 
(24.17) describe the rotation of the vector (f) in the (x, y )  plane, by the 
angle q, i.e. the phase distortion of the initial state. 

After the distortion (24.11), the wave function ql transforms to Q 2 ,  
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Table 24.1 : The transformation of all possible terms ui of the distorted 
wave function \Jr2 under the action of two (CN)" operators. 

Cl[CoS(lP/2)1111213) + i sin(V/2)1011213)1. 

Analogously, in the case of distortion of the second qubit by the phase 
p, we get additional terms in \Jr2 which are proportional to 101 1203) and 
1110213). Finally, for the distortion of the third qubit, we get additional 
terms in Q2 which are proportional to 1010213) and 1111203). 

For error correction, one applies to the state \Ic2 the operators, C N ~ ~  
and CN;~. Tbl. 24.1 shows the transformation of all possible terms (ui 
in the Tbl. 24.1) of the distorted wave function Q@). Now, one mea- 
sures the x-components of the second and the third spins. If the mea- 
surement gives the result I; = 1; = -1/2, then the "NOT-Operator" 
N ;  = 10,) (1 1 1" + 11 1 )  (01 1" should be applied to the first qubit. (The op- 
erator N changes the state in the I" representation.) For other outcomes 
of the measurement, 

the N" operator is not applied. As a result, for any outcome one gets the 
initial undistorted wave function @o for the first spin. 

For example, for the phase distortion of the first spin (formula 
(24.18)), we have after two CNX operations, 
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c1 [cos(@/2) I 1 10203) + i sin(@/2> 101 1 2  13)l. 

After measuring the second and the third qubits, we can get two out- 
comes, 

(24.2 1) 1)Z; = 1; = 1/2, 2)Zl = I;; = -1/2. 

In the first case, we have for the wave function of the first spin, 

Omitting the insignificant common factor cos(@/2), we get from (24.22) 
the initial wave function +o. 

For the second case in (24.21), we have after a measurement, the 
wave function for the first spin, 

ico sin(@/2)111) + icl sin(@/2)101). (24.23) 

In this case, one should apply the N*-operator to the wave function 
(24.23). Then, we have, 

icosin(@/2)101) + icl sin(@/2)111). (24.24) 

Ignoring the common factor i sin(@/2) in (24.24), we again restore the 
initial wave function +o. 

According to the scheme suggested in [61], each qubit is encoded 
with three qubits, and then these qubits are corrected, and the initial 
qubit $0 is restored. The decoding qubit can be used for computation, 
and then it is encoded again (see Fig. 24.4). 

The physical implementation of such schemes is not simple, because 
we have to apply the CN-gate in the ZX-representation. Additional results 
and sugestions on quantum error correction can be found in the paper by 
J. P. Paz and W. H. Zurek (in page 355), and the paper by E. Knill R. 
Laflamme, W. H. Zurek (in page 365) in reference [41]. 
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Figure 24.4: Steane’s scheme for error correction; (1)-encoding of the 
initial qubit @O with the three qubits; (2)-error correction and decod- 
ing of the initial qubit; (3)-computation; $0 is the initial qubit @O after 
computation. 



Chapter 25 

Quantum Gates in a 
Two-Spin System 

We shall consider here a quantum two-qubit gate in the simplest system 
which contains only two spins with the Ising interaction. The energy 
levels of the system are shown in Fig. 22.1. The Hamiltonian of the 
system, including the interaction with the electromagnetic field, is given 
by the expression (22.2). 

We shall discuss the opportunity of implementation of the quantum 
CN-gate using this two-spin system. Without an external electromag- 
netic field, the evolution of the system can be described by the following 
expression for the wave function, \I, ( t ) ,  

i,k=O 

where Eik is the energy of the corresponding states, 

A h 
2 2 Eoo = --(w1+ w2 + 4 ,  EOl = -(-w1+ 0 2  + J), 

(25.1) 

(25.2) 

A A 
2 2 El0 = -(w1 - 0 2  + J), Ell = -(@I + 0 2  - J ) .  
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If one applies the electromagnetic pulses, then the wave function 
can be represented in the form (22.3). One can transform it to the “in- 
teraction representation”, 

which allows one to get rid of the phase factors corresponding to free 
evolution. Then one gets the equations for the amplitudes, cik ( t ) ,  which 
can be written in the form, 

(25.4) 

where the Hamiltonian V describes the interaction between the two-spin 
system and the electromagnetic pulse, 

(25.5) 

However, equations (25.4) include rapidly oscillating time dependent 
coefficients, which makes them inconvenient for accurate numerical cal- 
culations of the dynamical behavior of the system. 

We shall use another approach based on equations (22.5) which are 
written in the system of coordinates connected with the rotating mag- 
netic field. Using the same substitution as in Chapter 22, 

we derive the equations with time-independent coefficients, 

-2idoo + 2(w2 - w1 - 2J)coo = QICIO + Q2co1, (25.6a) 
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Let us consider the free evolution of the two-spin system in the rotat- 
ing frame. Substituting 521 = !& = 0 in (25.6), we obtain the solution, 

co1 ( t )  = c01(0)e-i(w2-wl)f, 

ClO(t) = ClO(O), C l l ( t )  = C I l ( 0 ) .  

To get rid of the phase factor corresponding to the free evolution, we 
will discuss instead of dynamics of the coefficients Cik  ( t ) ,  the dynamics 
of the coefficients, 

C’,,(Q = ClO(t>,  C;l ( t>  = C l l ( t > .  

The detailed investigations of the amplitudes, cik ( t ) ,  (including their 
phases), under the action of the n-pulse, were carried out in [63]. In 
Fig. 25.la, the time dependence of the real part, Rec; ( t ) ,  and the imag- 
inary part, Zmc’,o(t) are shown, for the values of parameters (22.6), and 
initial conditions, 

c’11(0) = 1, C i k ( 0 )  = 0, (i, k )  # (1 ,  1). (25.7) 

One can see the monotonic decrease of R e c i 1 ( t )  and the increase of 
Z m ~ ’ , ~ ( t ) ,  which describe the transition 111) --+ exp(in/2)110). The 
values of Recio(t) and Zmc’,l(t) are negligible as are the values Icbo(t)l 
and cAl ( t )  I .  In Fig. 25.1 b, the analogous dependences are shown for the 
same values of parameters (22.6), and for the initial conditions, 

Now let us consider the initial conditions, 

CAI = 1, .Ik = 0, (i, k )  # (0, l),  (25.9) 
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Figure 25.1 : Time-evolution of the amplitudes cik under the action of a 
n-pulse, for the initial conditions, (a) (25.7); (b) (25.8). In (a): curve 
(1) corresponds to the Rec;, ( t ) ,  curve (2) corresponds to the I r n ~ ; ~ ( t ) .  
In (b): curve (I)  corresponds to the Recio(t), curve (2) corresponds to 
the Zmc', ( t ) .  The vertical arrows show the beginning and the end of the 
pulse. 



158 INTRODUCTION TO QUANTUM COMPUTERS 

which correspond to the population of the non-resonant level, 101). For 
these initial conditions, the amplitudes cik practically do not change un- 
der the action of a n-pulse. The same is true for the initial conditions, 

In Fig. 25.2 the action of the n-pulse on the superpositional initial 

cbO(O) = (0.3)'/2, cbl(0) = 5-1/2, (25.11) 

c;,(O) = 6-1/2, 

state, 

ciO(O) = 3-''2, 

is demonstrated, for the same parameters as in Fig. 25.1. One can see 
that at the end of the n-pulse the amplitudes take the following values, 

.'l1 = p i 2  clO(o), ' c ' , ~  = e1n/2c;1(0). (25.12) 

The values of "non-resonant" amplitudes change little. Thus, the action 
of a n-pulse with the frequency w2 - J corresponds to the action of a 
two-qubit quantum gate, 

which can be considered as a modified CN-gate. 
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Figure 25.2: Time dependence of the amplitudes ciO (a), and (b), for 
the superpositional initial conditions (25.11). In (a) the curve (1) cor- 
responds to the Rec;,(t), the curve (2) corresponds to the Z r n ~ ’ , ~ ( t ) .  In 
(b) the curve (1) corresponds to the Rec; ( t ) ,  the curve (2) corresponds 
to the Zrnc’, ( t ) .  The vertical arrows show the beginning and the end of 
the n-pulse. 



Chapter 26 

Quantum Logic Gates in a 
Spin Ensemble at Room 
Temperature 

This chapter is based on the idea suggested independently in [28, 291 
and [30], for quantum computation at room temperature. To explain the 
idea, let us first consider an ensemble of noninteracting spins, Z = 1/2, 
in an external magnetic field which points in the positive z-direction. In 
the state of the thermal equilibrium, the system can be described by the 
density matrix (16.17) which for the typical condition, ksT  >> hoo has 
the form (16.19). The expression (16.19) consists of two terms: The first 
term, which corresponds to the infinite temperature, is proportional to 
the unit matrix, po3 = (1/2)E. This term does not influence the average 
spin, (i), which can be measured experimentally for an ensemble of 
spins. Indeed, for example, 

1 1 
2 2 

(I") = -Tr{Z"E} = -Tr{Z"} = 0, (26.1) 

as ZXE = I", and T r { Z x }  = 0. The same is true for the operators Z Y  
and Zz. 

160 



26 Quantum Logic Gates in a Spin Ensemble at Room Temperature 161 

The second term in (16.19) describes the deviation from po3, 

The matrix p A  can be, in turn, represented as a sum of a diagonal matrix, 
pa, which is proportional to E ,  

and the matrix p b ,  

(26.3) 

(26.4) 

+ 
Again, the matrix pa does not influence the average spin, (I). 

Now let us consider the evolution of the spin ensemble. This evolu- 
tion can be caused, for example, by the application of resonant electro- 
magnetic pulses. We shall present the time-dependent density matrix in 
the form, 

P ( t )  = 2(1 - p/2)E + P b ( t ) -  (26.5) 

If we substitute p( t )  into the equation for the density matrix (16.5), we 
obtain the equation for matrix pb(t), 

1 

ihbb( t )  = [x(t), P b ( t ) l -  (26.6) 

Note, that this equation has the same form as the equation for the density 
matrix, p( t ) .  If we substitute (26.5) into (16.19) and put t = 0, we get 
the initial condition (26.4) for the matrix ,oh@). 

Now we consider, for comparison, the “pure” quantum ensemble 
of noninteracting spins at zero temperature. If the initial state of the 
ensemble is the ground state, we can describe the evolution of each spin 
either by the Schrodinger equation, or by the equation for the density 
matrix (16.5) with the initial conditions, 

P ( o ) = ( o  1 0  o ) .  
(26.7) 
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What is the difference between the average spin for a pure quantum en- 
semble at zero temperature, and the same ensemble at high temperature? 
They differ only by the factor 8 / 2  which appears in the initial condition 
(26.4). The evolution of these two systems will be identical. We already 
discussed this result in Chapter 16 for the particular case of a one-qubit 
rotation. 

To utilize this conclusion for quantum logic gates, we shall try to 
obtain a similar conclusion for an ensemble of spin groups (molecules). 
Let us consider the simplest case of two interacting spins, with the 
Hamiltonian (22.2), and the energy levels shown in Fig. 22.1. In decimal 
notation, 

the density matrix has the components, P j k ,  i, k = 0, 1 ,2 ,  3. The equi- 
librium density matrix is given by the expression, 

where Ek are the energy levels shown in Fig. 22.1. Taking into consid- 
eration the inequality, Ek/ kB T << 1, the density matrix can be approxi- 
mately represented as, 

X (26.9) 
1 ti 
4 8kBT 

p = - E + -  

01 + 02 + J 0 0 0 
0 01 - 02 - J 0 0 
0 0 -01 + 02 - J 0 
0 0 0 -01 - 02 + J 

Next, we shall assume, for simplicity, that, 

In this approximation, we can ignore the influence of the frequency dif- 
ference, (01 - oz), and the interaction constant, J ,  on the population 
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of the states in the thermal equilibrium. Then, the second term in (26.9) 
can be rewritten in the simple form, 

/ 1  0 0 o \  
(26.11a) p 0 0 0  0 

C o o 0  o ’ I, -lJ 
where a new B is introduced, ,6 = A ( @ I +  w 2 ) / 2 k ~  T .  The matrix p A ,  in 
turn, can be written as a sum of two matrices, pa and ,oh, 

0 0 0 0  
B 0 0 0 0  (26.1 1 b)  p u = - ;  7 iooo 

/ o  0 0 o \  
(26.1 1 b)  B 0 0 0 0  

p u = - ;  7 

(o  0 0 

1 0 0 0  

0 0 0 0  

To clarify the sense of the representation (26.11b), let us rewrite the 
matrices pa and in binary notation, 

One can see, that with the accuracy up to constant, j$, the matrix pb 

describes a pure quantum state, loo), and the matrix pa describes the 
state, 11 1). 

The question is if we can consider the evolution of the sub-ensemble 
which can be described, for example, by the density matrix Ph with the 
initial condition, (p/4)100) (001, independently of the evolution of the 
other sub-ensemble, described by the matrix pu. (Of course, as usual, 
we consider the evolution during a time interval which is short in com- 
parison with the relaxation time.) To answer this question, let us sup- 
pose that we apply electromagnetic pulses with the frequency, (w2 + J), 
which correspond to the resonant transitions between the states 100) and 
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101). In this case, we manipulate only the sub-ensemble “b”, which can 
be described by the matrix P b ( t ) ,  

PO0 Po1 0 0 
PlO P11 0 0 

0 0 0  

(26.13) 

The matrix (26.13) satisfies the equation of motion similar to (26.6) with 
the initial conditions (26.1 1b). In other words, the equations of motion 
for the matrix elements, pik (i, k = 0 or 1), and pn,m (n ,  m = 2 or 3) are 
approximately decoupled, i.e. the coupled terms in the equations (26.6) 
are not significant for the evolution of the system. So, again we can 
manipulate with the “sub-ensemble”, “b”, which, with the accuracy to 
the constant, can evolve like an ensemble of “pure” two-level quantum 
systems, which are initially populated in the ground state. (Certainly, in 
the same way we could manipulate with the other “sub-ensemble”, “a”, 
which is, with accuracy to the constant, equivalent to an ensemble of 
“pure” two-level systems initially populated in the excited state.) 

Finally, if we apply the electromagnetic pulses with the frequency 
(w2 + J), we obtain the evolution of a two-spin ensemble at room tem- 
peratures, which is approximately equivalent to the evolution of an en- 
semble of noninteracting spins, I = 1/2, that are initially populated 
in the ground state. Roughly speaking, if we only manipulate with the 
right spin, and do not touch the left spin, the evolution of the right spin 
at room temperature will be the same as the evolution of a single spin, 
I = 1/2, which initially is populated in the ground state. 

However, we should note that we did not achieve our main purpose - 
to realize quantum logic gates at high temperature. In fact, an ensemble 
of two-spin systems does not have any advantage over the ensemble 
of one-spin systems. Let us take the next step. We shall consider an 
ensemble of non-interacting four-spin molecules, for example, 

in which all spins are connected by the king interaction. We assume, for 
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simplicity, that the difference between the one-spin transition frequen- 
cies is small compared with the value of the average frequency, W k / 4 ,  

so we can ignore the influence of these differences on the population of 
the levels. Then, the equilibrium density matrix is given by the expres- 
sion, 

P = - - E i - p A ,  (26.14) 
1 

16 
where the deviation matrix, pa, has the decimal notation form, 

In binary notation the deviation matrix (26.15) can be written as, 

loolo) (OOlOl + loloo) (OlOOl + IlOOO) (10001- 

(~0111)(0111~ + (101 1) (10111 + 11 lOl) ( l10 l~+ 

+I1 110) (1 1101) - 21 11 11) (1 111 I}, 

Iijnm)(ijnmI E l iAj,ncm~) ( i ~ j ~ n c m D 1 .  

Using a unitary transformation, we would like to transform (26.16), to 
get the desirable sub-ensembles. We shall discuss later, in Chapter 28, 
how to make such transformations. Now let us rewrite the diagonal 
deviation matrix (26.16) in the form of the table (see Tbl. 26.1). In 
Tbl. 26.1, the first row shows all possible matrices, lijnm) (ijnml, which 
are denoted by a block, / i j  

n m  
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I 00 I 01 I 10 I 11 I 

Table 26.1: The diagonal matrix elements of pa before (the second row) 
and after (the third row) redistribution. The upper part of the table rep- 
resents the transformation to the ground state of the effective two-spin 
system. The lower table represents the transformation of the remaining 
diagonal elements of the density matrix. 

The second row shows the coefficients for the corresponding matrices in 
(26.16), without the factor 8/16. Assume, using a unitary transforma- 
tion, we manage to redistribute the coefficients in (26.16) as shown in 
the third row of Tbl. 26.1. Consider the first four columns in Tbl. 26.1. 
They correspond to the states, I O O i j ) .  If we apply to our molecule 
A B C D, the electromagnetic pulses which induce transitions between 
the states I O O i j ) ,  we will never disturb spins A and B.  We can con- 
sider a sub-ensemble of these states, and they evolve approximately as a 
“pure” two-spin system at zero temperature, which is initially populated 
in the ground state. We shall discuss this case in the next chapter. 



Chapter 27 

Evolution of an Ensemble of 
Four-Spin Molecules 

To explain the dynamics of an ensemble of four-spin molecules, let us 
write the Hamiltonian of the complex, 

taking into consideration the Ising interaction between all spins [64]. To 
get the Hamiltonian in a system of coordinates which rotates with the 
frequency of the circular polarized magnetic field, w, we use the unitary 
transformation (15.5a), 

Q, (27.1) 91 = e- iw Iz t  

zz  = z,z + ZI“ + I; + z;, 
where the lower index, “O”, indicates the last spin, D; index “1” refers 
to the spin C ,  and so on. Using the method, which was described in 
Chapter 15, we get the time-independent Hamiltonian in the rotating 
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frame, 

where, in the second term we suppose i -= k, wk = yk/kBZ, Q k  = ykh. 
When the rotating magnetic field is absent (Qk = 0, w = 0), the Hamil- 
tonian (27.2) has only diagonal matrix elements, which determine the 
energies of the stationary states. To find these energies, we should 
rewrite the expression for I$ (12.4), 

in terms of the four-spin basic states, l i3jzklno).  So, we have, 

where we assume summation over the indices i3, j 2 ,  k ,  and no. In the 
same way, we can write the second term in the Hamiltonian (27.2) in 
terms of the four-spin basic states, li3jzklno), 
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Now, we can find the energies of the stationary states. For the state 
(0000) we have the energy, 

For the state, ]OOOl) ,  we get, 

(27.6) 

For the states lOOlO),  lOlOO),  and IIOOO) we have, correspondingly, 

In (27.7) we assume that J i k  = J k j .  The first five energy levels are 
shown in Fig. 27.1, where we suppose that wn < wn+1. 

The Hamiltonian of our system (27.2) includes also the nondiagonal 
elements, which appear due to the rotating magnetic field (the third term 
in (27.2)). To derive the nondiagonal elements, we should write the 
operator 12 ( 12. lo), 

1 
1; = ~ ( I O r n ) ( 1 r n l  + Ilrn)(Ornl>, 

in terms of basic states, l i j kn) ,  in the same way as we did for the diag- 
onal elements. We have, 

1 
I* - - ( I i j k O ) ( i j k I I  + ~ i j k l ) ( i j k O ~ ) ,  (27.8) 
O - 2  
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Figure 27.1 : The first five energy levels for the four-spin system. 
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1 
I,” = ;(liOkn)(ilkn( + Iilkn)(iOknl), 

1 
Z x  - - ( lOjkn)( l jknl  + Il jkn)(Ojknl) .  
3 - 2  

Finally, we transform to decimal notation, 

lO000) + lo), lO0Ol) -+ I l ) ,  loolo) -+ (2) ,  

and so on. Then, combining the coefficients of ~OOOO)(OOOO~ in the 
Hamiltonian (27.2), we get the matrix element, ROO = Eo, which is 
given by the expression (27.5). The matrix element, ?I11 is given by 
(27.6). The matrix elements, x22, R44, and %88 are given by (27.7), 
and so on. In the same way, combining the coefficients at lO000) (0001 1, 
we get the nondiagonal matrix element, 

h 
2 ?I01= -- QO. (27.9) 

Analogously, we can get other nondiagonal matrix elements. For exam- 
ple, for even n,  n i 14, we have, ?In,n+l = ?&,I. For all k ,  0 5 k 5 7 ,  
we get, 

(27.10) 

and so on. Because the Hamiltonian is a Hermitian matrix, for real 
nondiagonal elements we have, ?Iik = ski. 

Now we are ready to write the equations of motion for the matrix 
elements of the density matrix. We put, 

h 
2 x k , k + 8  = --a39 

k=O 

where, as before, pCa = E/16 is the density matrix which corresponds 
to the infinite temperature. From (16.5) we have the following equations 
for the matrix elements rik, 

ihiik = fiirtrnk - Tinh!,,k, 0 5 i, k 5 15. (27.12) 
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Figure 27.2: Energy levels and frequencies of one-spin transitions for 
the states I O O i j ) .  

We shall present here the explicit equations for roo and r01, 

-2iioo = Q o h o  - ro1) + Q1(r2o - r02)+ (27.13) 

Q2(r40 - YO41 + Q 3 ( r 8 0  - r08), 

-2i iOl  = ( 2 / f t ) ( E l  - E 0 ) r o l  + QO(r11 - roo) + Q l ( r 2 1  - r03)+ 

Q2(r41  - rOS> + Q3(r81  - r09>, 

where El is the energy of the state (0001). 
Now, let us assume that we are going to induce single spin transi- 

tions only between the states, I O O i j ) .  The corresponding energy levels 
and frequencies are shown in Fig. 27.2. If we apply the electromagnetic 
pulses with the frequencies shown in Fig. 27.2, we can induce only the 
transitions shown in this figure. This means that the only matrix ele- 
ments of the density matrix (or matrix r )  which undergo a significant 
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change are the following, 

(27.14) 

The nondiagonal matrix elements, rOI and 1-10 correspond to a change 
of the orientation of spin D, when spin C is in the ground state. The 
matrix elements, r02 and r20 describe the inversion of spin C while spin 
D is in the ground state, and so on. All four transitions correspond to 
the ground state of spins A and B .  

Now we consider the equations (27.13). For our case, neglecting all 
nondiagonal terms, except (27.14), we can rewrite the equations (27.13) 

-2iroo = Qo(r10 - rod + QIG-20 - yo213 (27.15) 
as, 

-2iro1 = (2/h)(E1 - Eoh-01 + c2o(r11 - roo). 
Similar approximate equations can be written for all matrix elements 
(27.14). Because of the decoupling from the other matrix elements, 
these equations do not differ from the corresponding equations for two- 
spin system. 

Now, let us assume that the initial density matrix of the four-spin 
system has diagonal matrix elements corresponding to the third row in 
Tbl. 26.1. Then, for the matrix elements (27.14), the initial conditions 
are given by the expressions, 

roo(0) = 2, r ; k ( O )  = 0, (i, k = 0, 1, 2, 3 ) ,  (i, k )  # (0,O). 
(27.16) 

The approximate equations for the matrix elements (27.14), in combina- 
tion with the initial conditions (27.15), do not differ (with the accuracy 
to the constant) from the case when one has a “pure” two-spin system, 
at zero temperature, which is initially populated in the ground state. 
So, quantum logic can be realized using two-spin sub-ensemble of the 
four-spin system, at room temperature, if one can transform the initial 
density matrix in such a way that the matrix, r ,  will have the first matrix 
elements, rik, (i, k = 0, 1 ,  2, 3) given by (27.16). 



Chapter 28 

Getting the Desired Density 
Matrix 

Now we shall discuss how to make the transformation, 

aiknrn Jiknm) (iknm 1 + Jiknm) (i knm),  (28.1) 

where we assume summation over the indices i, k ,  n,  and m; aiknrn are 
the numbers in the second row of Tbl. 26.1; ajknm are the numbers in 
the third row of Tbl. 26.1. Ignoring the factor, 8/16, these numbers 
represent the diagonal elements of the deviation matrix. To realize this 
transformation, Gershenfeld and Chuang [29] applied the next sequence 
(GC-sequence) of the CN-gates to the initial density matrix (26.16), 

GC = C N O ~ C N ~ ~ C N ~ ~ C N ~ O .  (28.2) 

To check the action of this sequence, let us first consider the trans- 
formation of the density matrix under the action of the unitary operator, 
U .  Consider the wave function, 

(28.3) 

After the action of the unitary operator, U ,  we get new wave function, 

(28.4) 
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where the new coefficients, c;, are expressed in terms of the old ones, 
c,], in the following way, 

CL = U n k  Ck 3 (28.5) 

where we assume summation over repeated indices. The matrix ele- 
ments of the new density matrix, after the unitary transformation U ,  can 
be represented as, 

Formula (28.6) represents the well-known quantum-mechanical equa- 
tion for the transformation of the density matrix, 

p' = uput. (28.8) 

In our case, U = GC (28.2). 
Let us check, for example, the action of the GC-sequence on the 

last term in (26.16). Up to a factor, - B / S ,  we have the initial matrix, 
Mo = ~ 1 ~ 1 ~ 1 ~ 1 ~ ) ( 1 ~ 1 ~ 1 ~ 1 ~ ~ .  Now, we find the transformation of this 
matrix under the action of the first gate C N ~ O  in (28.2), 
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One can see, that the action of CNZO on the matrix, 
is the following. If j = 0, then, the matrix does not change; if j = 1, 
then, 

l i j n k ) ( i j n k \  + \ijnE)(ij&I, (28.10) 

where k means “complement” to k (0 = 1, i = 0). So, the action of 
the cN-gate on the density matrix is similar to its action on the quantum 
state. After application of the CNZl-gate, we have, 

M2 = CN21M1CNlI = 11312010o)(131201001. (28.11) 

After application of C ~ 1 2  and CN02, the matrix Mz does not change, 
as in this case, the control units are l O l ) ( O l l  and IOo)(Ool, correspond- 
ingly. So, the matrix I l3 l2  11 l o )  ( l3 121 lol transforms to the matrix, 
11312010o)(131201001. This corresponds to Tbl. 26.1 (compare the last 
column of the second row, and the 4-th to the end column of the third 
row). In the same way, considering, for example, the second term in 
(26.16), we obtain the following transformation under the action of the 
GC sequence (28.2), 

0. MO = 1030201 10)  (030201 101 3 (28.12) 

1. M~ = C N ~ ~ M ~ C N ~ ,  = M ~ ,  

3 .  M~ = C N ~ ~ M ~ C N ~ ,  = M ~ ,  

2. M2 = CN21MoCNlI = Mo, 

4. M4 = CN02MoCNi2 = ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ( ~ ~ ~ ~ ~ ~ ~ ~ ~ .  

This transformation also corresponds to Tbl. 26.1. In the same way, we 
can check all other transformations. 

Thus, using the GC sequence of the CN-gates, one can transform 
the initial density matrix to the density matrix which describes a sub- 
ensemble of spins in the states 10302iljo), whose evolution corresponds 
to the evolution of an ensemble of two-spin systems, which are initially 
populated in the ground state. Analogously, one can get the effective 3- 
spin “pure” quantum system from a 6-spin chain, and so on [29]. Two- 
spin effective system can be used for implementation of the two-qubit 
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gates. Bigger effective systems will be, probably, convenient for the 
quantum computation. 

Currently, such experiments are expected to be done with many- 
atomic molecules in liquids. A big molecule can involve a number of 
weakly interacting nuclear spins (usually protons), which have a slightly 
different frequencies depending on the chemical structure. The interac- 
tion between molecules is very small, and the times of relaxation are 
extremely large: the smallest time which corresponds to the relaxation 
of the transversal component of the average nuclear spin is of the or- 
der of 1s. Because of very small differences between the frequencies 
of spins, the special complicated sequences of pulses are expected to be 
used to manipulate with a spin. So, one can not exclude that the first 
quantum computation will be done not in a powerful ion trap, but, as it 
was mentimed by Gary Taubes [31], in a cup of coffee. 



Chapter 29 

Conclusion 

Here we present our vision of the current stage of quantum computation. 
We mentioned in the Introduction that there exist two main directions for 
design of future computers. One of them is connected with the devel- 
opment of digital computers, and is based on electron conductivity. The 
other direction-of quantum computation-is connected with develop- 
ment of quantum computers, and is based mainly on the resonant inter- 
action of electromagnetic pulses with nuclear or atomic systems. The 
output of quantum computation, in a simple variant, is a sequence of 
data, “there is voltage” (which represents “l”), and “there is no voltage” 
(which represents “0”). There exist other suggestions for implementa- 
tions of quantum computation, for example, those using the spin states 
of coupled single-electron quantum dots [65].  These systems do not 
use resonance pulses, and could be of significant interest for quantum 
computation. 

The problem of decoherence was not addressed in this book. It is the 
main obstacle for the physical realization of a quantum computer. An 
entangled pair of qubits is a superposition of two qubits that cannot be 
decomposed. In a closed system it would remain in that superposition 
indefinitely. But no system is closed and the interactions with the en- 
vironment destroy this delicate state. The pair of qubits has decohered. 
Initial estimates of the decoherence time [66] were not encouraging, 
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but new systems seem to offer longer decoherence times [38]. Quan- 
tum computation may inspire new directions in material science, as we 
search for materials that have long decoherence times. 

When qubits are in superposition, they are not in an eigenstate of 
the Hamiltonian describing the quantum computer. Their dynamics then 
becomes important. This establishes a relation between dynamical sys- 
tems and quantum computation. Most of the models used for quantum 
computation are quantum chaotic systems. This means that treated as 
a classical system they are chaotic. We feel that for the physical re- 
alization of a quantum computer, the dynamical processes should be 
understood. Recent developments in dynamical systems have provided 
us with the tools that allow us to explore this new field of dynamical 
quantum computation. 

So far, there are several significant achievments in quantum com- 
puting: the first quantum algorithm, the first error correction codes, and 
two very promising implementations of quantum logic (the cooled ions 
in ion traps, and nuclear spins in molecules). The most important future 
step is experimental implementation of quantum logic. A real quan- 
tum logic gate should demonstrate the correct transformation of an ar- 
bitrary superpositional state, talung into consideration both magnitude 
and phase of complex amplitudes. It is possible that all difficulties of 
quantum computation will be overcome. The unexpected discoveries of 
the last few years make us feel optimistic. 
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